将尺度不确定性纳入微生物组和基因表达分析作为规范化的延伸

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Michelle Pistner Nixon, Gregory B. Gloor, Justin D. Silverman
{"title":"将尺度不确定性纳入微生物组和基因表达分析作为规范化的延伸","authors":"Michelle Pistner Nixon, Gregory B. Gloor, Justin D. Silverman","doi":"10.1186/s13059-025-03609-3","DOIUrl":null,"url":null,"abstract":"Statistical normalizations are used in differential analyses to address sample-to-sample variation in sequencing depth. Yet normalizations make strong, implicit assumptions about the scale of biological systems, such as microbial load, leading to false positives and negatives. We introduce scale models as a generalization of normalizations, which allows researchers to model potential errors in these modeling assumptions, thereby enhancing the transparency and robustness of data analyses. In practice, scale models can drastically reduce false positives and false negatives rates. We introduce updates to the popular ALDEx2 software package, available on Bioconductor, facilitating scale model analysis.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"44 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incorporating scale uncertainty in microbiome and gene expression analysis as an extension of normalization\",\"authors\":\"Michelle Pistner Nixon, Gregory B. Gloor, Justin D. Silverman\",\"doi\":\"10.1186/s13059-025-03609-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Statistical normalizations are used in differential analyses to address sample-to-sample variation in sequencing depth. Yet normalizations make strong, implicit assumptions about the scale of biological systems, such as microbial load, leading to false positives and negatives. We introduce scale models as a generalization of normalizations, which allows researchers to model potential errors in these modeling assumptions, thereby enhancing the transparency and robustness of data analyses. In practice, scale models can drastically reduce false positives and false negatives rates. We introduce updates to the popular ALDEx2 software package, available on Bioconductor, facilitating scale model analysis.\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-025-03609-3\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03609-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

统计归一化用于差分分析,以解决测序深度的样本间差异。然而,标准化对生物系统的规模(如微生物负荷)做出了强烈而隐含的假设,从而导致假阳性和假阴性。我们引入了比例模型作为归一化的泛化,这使得研究人员能够对这些建模假设中的潜在误差进行建模,从而提高数据分析的透明度和鲁棒性。在实践中,比例模型可以大大减少假阳性和假阴性率。我们介绍了流行的ALDEx2软件包的更新,可在Bioconductor,促进比例模型分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Incorporating scale uncertainty in microbiome and gene expression analysis as an extension of normalization
Statistical normalizations are used in differential analyses to address sample-to-sample variation in sequencing depth. Yet normalizations make strong, implicit assumptions about the scale of biological systems, such as microbial load, leading to false positives and negatives. We introduce scale models as a generalization of normalizations, which allows researchers to model potential errors in these modeling assumptions, thereby enhancing the transparency and robustness of data analyses. In practice, scale models can drastically reduce false positives and false negatives rates. We introduce updates to the popular ALDEx2 software package, available on Bioconductor, facilitating scale model analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genome Biology
Genome Biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍: Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens. With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category. Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信