H3K4me3结合alfin样蛋白募集SWR1参与H2A的基因体沉积。Z

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Linhao Xu, Yafei Wang, Xueying Li, Qin Hu, Vanda Adamkova, Junjie Xu, C. Jake Harris, Israel Ausin
{"title":"H3K4me3结合alfin样蛋白募集SWR1参与H2A的基因体沉积。Z","authors":"Linhao Xu, Yafei Wang, Xueying Li, Qin Hu, Vanda Adamkova, Junjie Xu, C. Jake Harris, Israel Ausin","doi":"10.1186/s13059-025-03605-7","DOIUrl":null,"url":null,"abstract":"The H2A.Z histone variant is highly enriched over gene bodies, playing an essential role in several genome-templated processes, including transcriptional regulation and epigenetic patterning across eukaryotes. Deposition of H2A.Z is mediated by the SWR1 remodeling complex. How SWR1 is directed to gene bodies is largely unknown. Here, we show that ALFIN-LIKE (AL) proteins are responsible for H2A.Z gene body patterning in Arabidopsis. AL proteins encode H3K4me3-binding PHD domains, and by ChIP-seq, we confirm preferential binding of AL5 to H3K4me3 over H3K4me1/2 in planta. We observe a global reduction in H2A.Z in al septuple mutants (al7m), especially over H3K4me3-enriched genic regions. While MBD9 recruits SWR1 to nucleosome-free regions, ALs act non-redundantly with MBD9 for deposition of H2A.Z. Notably, al7m mutants show severe developmental abnormalities and upregulation of H2A.Z gene body-enriched responsive genes. Therefore, we propose a model whereby AL proteins direct gene body enrichment of H2A.Z by recruiting SWR1 to H3K4me3-containing responsive genes.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"133 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"H3K4me3 binding ALFIN-LIKE proteins recruit SWR1 for gene-body deposition of H2A.Z\",\"authors\":\"Linhao Xu, Yafei Wang, Xueying Li, Qin Hu, Vanda Adamkova, Junjie Xu, C. Jake Harris, Israel Ausin\",\"doi\":\"10.1186/s13059-025-03605-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The H2A.Z histone variant is highly enriched over gene bodies, playing an essential role in several genome-templated processes, including transcriptional regulation and epigenetic patterning across eukaryotes. Deposition of H2A.Z is mediated by the SWR1 remodeling complex. How SWR1 is directed to gene bodies is largely unknown. Here, we show that ALFIN-LIKE (AL) proteins are responsible for H2A.Z gene body patterning in Arabidopsis. AL proteins encode H3K4me3-binding PHD domains, and by ChIP-seq, we confirm preferential binding of AL5 to H3K4me3 over H3K4me1/2 in planta. We observe a global reduction in H2A.Z in al septuple mutants (al7m), especially over H3K4me3-enriched genic regions. While MBD9 recruits SWR1 to nucleosome-free regions, ALs act non-redundantly with MBD9 for deposition of H2A.Z. Notably, al7m mutants show severe developmental abnormalities and upregulation of H2A.Z gene body-enriched responsive genes. Therefore, we propose a model whereby AL proteins direct gene body enrichment of H2A.Z by recruiting SWR1 to H3K4me3-containing responsive genes.\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"133 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-025-03605-7\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03605-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

H2A。Z组蛋白变体在基因体上高度富集,在真核生物的转录调控和表观遗传模式等基因组模板化过程中发挥重要作用。H2A的沉积。Z由SWR1重塑复合体介导。SWR1是如何定向到基因小体的,这在很大程度上是未知的。在这里,我们发现ALFIN-LIKE (AL)蛋白负责H2A。拟南芥Z基因体模式。AL蛋白编码H3K4me3结合的PHD结构域,通过ChIP-seq,我们证实AL5在植物中比H3K4me1/2更优先结合H3K4me3。我们观察到H2A的全球减少。在所有七个突变体(al7m)中,特别是在h3k4me3富集的基因区域。当MBD9将SWR1招募到无核小体区域时,ALs与MBD9一起非冗余地沉积H2A.Z。值得注意的是,al7m突变体表现出严重的发育异常和H2A上调。Z基因体富集的应答基因。因此,我们提出了AL蛋白直接介导H2A基因体富集的模型。通过将SWR1招募到含有h3k4me3的应答基因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
H3K4me3 binding ALFIN-LIKE proteins recruit SWR1 for gene-body deposition of H2A.Z
The H2A.Z histone variant is highly enriched over gene bodies, playing an essential role in several genome-templated processes, including transcriptional regulation and epigenetic patterning across eukaryotes. Deposition of H2A.Z is mediated by the SWR1 remodeling complex. How SWR1 is directed to gene bodies is largely unknown. Here, we show that ALFIN-LIKE (AL) proteins are responsible for H2A.Z gene body patterning in Arabidopsis. AL proteins encode H3K4me3-binding PHD domains, and by ChIP-seq, we confirm preferential binding of AL5 to H3K4me3 over H3K4me1/2 in planta. We observe a global reduction in H2A.Z in al septuple mutants (al7m), especially over H3K4me3-enriched genic regions. While MBD9 recruits SWR1 to nucleosome-free regions, ALs act non-redundantly with MBD9 for deposition of H2A.Z. Notably, al7m mutants show severe developmental abnormalities and upregulation of H2A.Z gene body-enriched responsive genes. Therefore, we propose a model whereby AL proteins direct gene body enrichment of H2A.Z by recruiting SWR1 to H3K4me3-containing responsive genes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genome Biology
Genome Biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍: Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens. With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category. Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信