Ruochen Ma, Jian-Hao Zhang, Zhen Bi, Meng Cheng, Chong Wang
{"title":"具有平均对称性的拓扑相:退相干、无序和本征","authors":"Ruochen Ma, Jian-Hao Zhang, Zhen Bi, Meng Cheng, Chong Wang","doi":"10.1103/physrevx.15.021062","DOIUrl":null,"url":null,"abstract":"Global symmetries greatly enrich the landscape of topological quantum phases, playing an essential role from topological insulators to fractional quantum Hall effect. Topological phases in mixed quantum states, originating from decoherence in open quantum systems or disorders in imperfect crystalline solids, have recently garnered significant interest. Unlike pure states, mixed quantum states can exhibit average symmetries—symmetries that keep the total ensemble invariant but not on each individual state. In this work, we present a systematic classification and characterization of average symmetry-protected topological (ASPT) phases applicable to generic symmetry groups, encompassing both average and exact symmetries, for bosonic and fermionic systems. Moreover, we formulate the theory of average symmetry-enriched topological (ASET) orders in disordered bosonic systems. Our systematic approach helps clarify nuanced issues in previous literature and uncovers compelling new physics. Notably, we discover that (1) the definition and classification of ASPT phases in decohered and disordered systems exhibit subtle differences, (2) despite these differences, ASPT phases in both settings can be classified and characterized under a unified framework of defect decoration and spectral sequence, (3) this systematic classification uncovers a plethora of ASPT phases that are intrinsically mixed, implying they can exclusively manifest in decohered or disordered systems where part of the symmetry is average, and (4) similarly for ASET, we find intrinsically disordered phases exhibiting exotic anyon behaviors—the ground states of such phases necessarily contain localized anyons, with gapless (yet still localized) excitation blue spectra. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"136 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topological Phases with Average Symmetries: The Decohered, the Disordered, and the Intrinsic\",\"authors\":\"Ruochen Ma, Jian-Hao Zhang, Zhen Bi, Meng Cheng, Chong Wang\",\"doi\":\"10.1103/physrevx.15.021062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Global symmetries greatly enrich the landscape of topological quantum phases, playing an essential role from topological insulators to fractional quantum Hall effect. Topological phases in mixed quantum states, originating from decoherence in open quantum systems or disorders in imperfect crystalline solids, have recently garnered significant interest. Unlike pure states, mixed quantum states can exhibit average symmetries—symmetries that keep the total ensemble invariant but not on each individual state. In this work, we present a systematic classification and characterization of average symmetry-protected topological (ASPT) phases applicable to generic symmetry groups, encompassing both average and exact symmetries, for bosonic and fermionic systems. Moreover, we formulate the theory of average symmetry-enriched topological (ASET) orders in disordered bosonic systems. Our systematic approach helps clarify nuanced issues in previous literature and uncovers compelling new physics. Notably, we discover that (1) the definition and classification of ASPT phases in decohered and disordered systems exhibit subtle differences, (2) despite these differences, ASPT phases in both settings can be classified and characterized under a unified framework of defect decoration and spectral sequence, (3) this systematic classification uncovers a plethora of ASPT phases that are intrinsically mixed, implying they can exclusively manifest in decohered or disordered systems where part of the symmetry is average, and (4) similarly for ASET, we find intrinsically disordered phases exhibiting exotic anyon behaviors—the ground states of such phases necessarily contain localized anyons, with gapless (yet still localized) excitation blue spectra. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20161,\"journal\":{\"name\":\"Physical Review X\",\"volume\":\"136 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review X\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevx.15.021062\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.021062","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Topological Phases with Average Symmetries: The Decohered, the Disordered, and the Intrinsic
Global symmetries greatly enrich the landscape of topological quantum phases, playing an essential role from topological insulators to fractional quantum Hall effect. Topological phases in mixed quantum states, originating from decoherence in open quantum systems or disorders in imperfect crystalline solids, have recently garnered significant interest. Unlike pure states, mixed quantum states can exhibit average symmetries—symmetries that keep the total ensemble invariant but not on each individual state. In this work, we present a systematic classification and characterization of average symmetry-protected topological (ASPT) phases applicable to generic symmetry groups, encompassing both average and exact symmetries, for bosonic and fermionic systems. Moreover, we formulate the theory of average symmetry-enriched topological (ASET) orders in disordered bosonic systems. Our systematic approach helps clarify nuanced issues in previous literature and uncovers compelling new physics. Notably, we discover that (1) the definition and classification of ASPT phases in decohered and disordered systems exhibit subtle differences, (2) despite these differences, ASPT phases in both settings can be classified and characterized under a unified framework of defect decoration and spectral sequence, (3) this systematic classification uncovers a plethora of ASPT phases that are intrinsically mixed, implying they can exclusively manifest in decohered or disordered systems where part of the symmetry is average, and (4) similarly for ASET, we find intrinsically disordered phases exhibiting exotic anyon behaviors—the ground states of such phases necessarily contain localized anyons, with gapless (yet still localized) excitation blue spectra. Published by the American Physical Society2025
期刊介绍:
Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.