PSIA:植物自交不亲和的综合知识库。

IF 7.9
Chen Wang, Hong Zhao, Hongkui Zhang, Sijie Sun, Yongbiao Xue
{"title":"PSIA:植物自交不亲和的综合知识库。","authors":"Chen Wang, Hong Zhao, Hongkui Zhang, Sijie Sun, Yongbiao Xue","doi":"10.1093/gpbjnl/qzaf046","DOIUrl":null,"url":null,"abstract":"<p><p>Self-incompatibility (SI) is an important genetic mechanism in angiosperms that prevents inbreeding and promotes outcrossing, with significant implications for crop breeding, including genetic diversity, hybrid seed production, and yield optimization. In eudicots, SI is typically governed by a single S-locus containing tightly linked pistil and pollen S-determinant genes. Despite major advances in SI research, a centralized, comprehensive resource for SI-related genomic data remains lacking. To address this gap, we developed the Plant Self-Incompatibility Atlas (PSIA), a systematically curated knowledgebase providing an extensive compilation of plant SI, including genomic resources for SI species, S gene annotations, molecular mechanisms, phylogenetic relationships, and comparative genomic analyses. The current release of PSIA includes over 500 genome assemblies from 469 SI species. Using known S genes as queries, we manually identified and rigorously curated 3700 S genes. PSIA provides detailed S-locus information from assembled SI species and offers an interactive platform for browsing, BLAST searches, S gene analysis, and data retrieval. Additionally, PSIA serves as a unique platform for comparative genomic studies of S-loci, facilitating exploration of the dynamic processes underlying the origin, loss, and regain of SI. As a comprehensive and user-friendly resource, PSIA will greatly advance our understanding of angiosperm SI and serve as a valuable tool for crop breeding and hybrid seed production. PSIA is freely available at http://www.plantsi.cn.</p>","PeriodicalId":94020,"journal":{"name":"Genomics, proteomics & bioinformatics","volume":" ","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PSIA: A Comprehensive Knowledgebase of Plant Self-Incompatibility.\",\"authors\":\"Chen Wang, Hong Zhao, Hongkui Zhang, Sijie Sun, Yongbiao Xue\",\"doi\":\"10.1093/gpbjnl/qzaf046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Self-incompatibility (SI) is an important genetic mechanism in angiosperms that prevents inbreeding and promotes outcrossing, with significant implications for crop breeding, including genetic diversity, hybrid seed production, and yield optimization. In eudicots, SI is typically governed by a single S-locus containing tightly linked pistil and pollen S-determinant genes. Despite major advances in SI research, a centralized, comprehensive resource for SI-related genomic data remains lacking. To address this gap, we developed the Plant Self-Incompatibility Atlas (PSIA), a systematically curated knowledgebase providing an extensive compilation of plant SI, including genomic resources for SI species, S gene annotations, molecular mechanisms, phylogenetic relationships, and comparative genomic analyses. The current release of PSIA includes over 500 genome assemblies from 469 SI species. Using known S genes as queries, we manually identified and rigorously curated 3700 S genes. PSIA provides detailed S-locus information from assembled SI species and offers an interactive platform for browsing, BLAST searches, S gene analysis, and data retrieval. Additionally, PSIA serves as a unique platform for comparative genomic studies of S-loci, facilitating exploration of the dynamic processes underlying the origin, loss, and regain of SI. As a comprehensive and user-friendly resource, PSIA will greatly advance our understanding of angiosperm SI and serve as a valuable tool for crop breeding and hybrid seed production. PSIA is freely available at http://www.plantsi.cn.</p>\",\"PeriodicalId\":94020,\"journal\":{\"name\":\"Genomics, proteomics & bioinformatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genomics, proteomics & bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/gpbjnl/qzaf046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics, proteomics & bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/gpbjnl/qzaf046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自交不亲和是被子植物防止近亲繁殖和促进异交的重要遗传机制,对作物育种的遗传多样性、杂交种子生产和产量优化具有重要意义。在雌蕊和花粉中,SI通常由单个s位点控制,其中包含紧密连接的雌蕊和花粉s决定基因。尽管SI研究取得了重大进展,但仍然缺乏集中、全面的SI相关基因组数据资源。为了解决这一差距,我们开发了植物自交不亲和性图谱(PSIA),这是一个系统整理的知识库,提供了广泛的植物自交不亲和性汇编,包括自交不亲和性物种的基因组资源、S基因注释、分子机制、系统发育关系和比较基因组分析。目前发布的PSIA包括来自469个SI物种的500多个基因组组装。使用已知的S基因作为查询,我们人工识别并严格筛选了3700个S基因。PSIA提供了来自组装的SI物种的详细S位点信息,并提供了浏览,BLAST搜索,S基因分析和数据检索的交互式平台。此外,PSIA还为s位点的比较基因组研究提供了一个独特的平台,有助于探索SI的起源、丧失和恢复背后的动态过程。作为一个综合性的、用户友好的资源,PSIA将极大地促进我们对被子植物SI的了解,并为作物育种和杂交种子生产提供有价值的工具。PSIA可在http://www.plantsi.cn免费获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PSIA: A Comprehensive Knowledgebase of Plant Self-Incompatibility.

Self-incompatibility (SI) is an important genetic mechanism in angiosperms that prevents inbreeding and promotes outcrossing, with significant implications for crop breeding, including genetic diversity, hybrid seed production, and yield optimization. In eudicots, SI is typically governed by a single S-locus containing tightly linked pistil and pollen S-determinant genes. Despite major advances in SI research, a centralized, comprehensive resource for SI-related genomic data remains lacking. To address this gap, we developed the Plant Self-Incompatibility Atlas (PSIA), a systematically curated knowledgebase providing an extensive compilation of plant SI, including genomic resources for SI species, S gene annotations, molecular mechanisms, phylogenetic relationships, and comparative genomic analyses. The current release of PSIA includes over 500 genome assemblies from 469 SI species. Using known S genes as queries, we manually identified and rigorously curated 3700 S genes. PSIA provides detailed S-locus information from assembled SI species and offers an interactive platform for browsing, BLAST searches, S gene analysis, and data retrieval. Additionally, PSIA serves as a unique platform for comparative genomic studies of S-loci, facilitating exploration of the dynamic processes underlying the origin, loss, and regain of SI. As a comprehensive and user-friendly resource, PSIA will greatly advance our understanding of angiosperm SI and serve as a valuable tool for crop breeding and hybrid seed production. PSIA is freely available at http://www.plantsi.cn.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信