设计一种计算机辅助诊断系统,用于心脏肥大的检测和放射学报告生成。

PLOS digital health Pub Date : 2025-05-20 eCollection Date: 2025-05-01 DOI:10.1371/journal.pdig.0000835
Tianhao Zhu, Kexin Xu, Wonchan Son, Kristofer Linton-Reid, Marc Boubnovski-Martell, Matt Grech-Sollars, Antoine D Lain, Joram M Posma
{"title":"设计一种计算机辅助诊断系统,用于心脏肥大的检测和放射学报告生成。","authors":"Tianhao Zhu, Kexin Xu, Wonchan Son, Kristofer Linton-Reid, Marc Boubnovski-Martell, Matt Grech-Sollars, Antoine D Lain, Joram M Posma","doi":"10.1371/journal.pdig.0000835","DOIUrl":null,"url":null,"abstract":"<p><p>Chest X-ray (CXR) is a diagnostic tool for cardiothoracic assessment. They make up 50% of all diagnostic imaging tests. With hundreds of images examined every day, radiologists can suffer from fatigue. This fatigue may reduce diagnostic accuracy and slow down report generation. We describe a prototype computer-assisted diagnosis (CAD) pipeline employing computer vision (CV) and Natural Language Processing (NLP). It was trained and evaluated on the publicly available MIMIC-CXR dataset. We perform image quality assessment, view labelling, and segmentation-based cardiomegaly severity classification. We use the output of the severity classification for large language model-based report generation. Four board-certified radiologists assessed the output accuracy of our CAD pipeline. Across the dataset composed of 377,100 CXR images and 227,827 free-text radiology reports, our system identified 0.18% of cases with mixed-sex mentions, 0.02% of poor quality images (F1 = 0.81), and 0.28% of wrongly labelled views (accuracy 99.4%). We assigned views for 4.18% of images which have unlabelled views. Our binary cardiomegaly classification model has 95.2% accuracy. The inter-radiologist agreement on evaluating the generated report's semantics and correctness for radiologist-MIMIC is 0.62 (strict agreement) and 0.85 (relaxed agreement) similar to the radiologist-CAD agreement of 0.55 (strict) and 0.93 (relaxed). Our work found and corrected several incorrect or missing metadata annotations for the MIMIC-CXR dataset. The performance of our CAD system suggests performance on par with human radiologists. Future improvements revolve around improved text generation and the development of CV tools for other diseases.</p>","PeriodicalId":74465,"journal":{"name":"PLOS digital health","volume":"4 5","pages":"e0000835"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12091825/pdf/","citationCount":"0","resultStr":"{\"title\":\"Designing a computer-assisted diagnosis system for cardiomegaly detection and radiology report generation.\",\"authors\":\"Tianhao Zhu, Kexin Xu, Wonchan Son, Kristofer Linton-Reid, Marc Boubnovski-Martell, Matt Grech-Sollars, Antoine D Lain, Joram M Posma\",\"doi\":\"10.1371/journal.pdig.0000835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chest X-ray (CXR) is a diagnostic tool for cardiothoracic assessment. They make up 50% of all diagnostic imaging tests. With hundreds of images examined every day, radiologists can suffer from fatigue. This fatigue may reduce diagnostic accuracy and slow down report generation. We describe a prototype computer-assisted diagnosis (CAD) pipeline employing computer vision (CV) and Natural Language Processing (NLP). It was trained and evaluated on the publicly available MIMIC-CXR dataset. We perform image quality assessment, view labelling, and segmentation-based cardiomegaly severity classification. We use the output of the severity classification for large language model-based report generation. Four board-certified radiologists assessed the output accuracy of our CAD pipeline. Across the dataset composed of 377,100 CXR images and 227,827 free-text radiology reports, our system identified 0.18% of cases with mixed-sex mentions, 0.02% of poor quality images (F1 = 0.81), and 0.28% of wrongly labelled views (accuracy 99.4%). We assigned views for 4.18% of images which have unlabelled views. Our binary cardiomegaly classification model has 95.2% accuracy. The inter-radiologist agreement on evaluating the generated report's semantics and correctness for radiologist-MIMIC is 0.62 (strict agreement) and 0.85 (relaxed agreement) similar to the radiologist-CAD agreement of 0.55 (strict) and 0.93 (relaxed). Our work found and corrected several incorrect or missing metadata annotations for the MIMIC-CXR dataset. The performance of our CAD system suggests performance on par with human radiologists. Future improvements revolve around improved text generation and the development of CV tools for other diseases.</p>\",\"PeriodicalId\":74465,\"journal\":{\"name\":\"PLOS digital health\",\"volume\":\"4 5\",\"pages\":\"e0000835\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12091825/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLOS digital health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pdig.0000835\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLOS digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1371/journal.pdig.0000835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

胸部x光片(CXR)是一种用于心胸评估的诊断工具。它们占所有诊断性影像学检查的50%。放射科医生每天要检查数百张图像,可能会感到疲劳。这种疲劳可能会降低诊断的准确性,减慢报告的生成速度。我们描述了一个原型计算机辅助诊断(CAD)管道采用计算机视觉(CV)和自然语言处理(NLP)。它在公开可用的MIMIC-CXR数据集上进行了训练和评估。我们进行图像质量评估、视图标记和基于分割的心脏肥大严重程度分类。我们将严重性分类的输出用于基于语言模型的大型报告生成。四名委员会认证的放射科医生评估了我们CAD管道的输出准确性。在由377,100张CXR图像和227,827份自由文本放射学报告组成的数据集中,我们的系统识别出了0.18%的混合性别提及病例,0.02%的劣质图像(F1 = 0.81)和0.28%的错误标记视图(准确率99.4%)。我们为4.18%的未标记视图的图像分配视图。我们的二元心脏扩张分类模型准确率为95.2%。放射科医师在评估radiologist-MIMIC生成报告的语义和正确性方面的一致性为0.62(严格一致性)和0.85(宽松一致性),类似于放射科医师- cad的一致性为0.55(严格一致性)和0.93(宽松一致性)。我们的工作发现并纠正了MIMIC-CXR数据集的几个不正确或缺失的元数据注释。我们的CAD系统的性能表明与人类放射科医生的性能相当。未来的改进将围绕改进文本生成和开发用于其他疾病的CV工具展开。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Designing a computer-assisted diagnosis system for cardiomegaly detection and radiology report generation.

Chest X-ray (CXR) is a diagnostic tool for cardiothoracic assessment. They make up 50% of all diagnostic imaging tests. With hundreds of images examined every day, radiologists can suffer from fatigue. This fatigue may reduce diagnostic accuracy and slow down report generation. We describe a prototype computer-assisted diagnosis (CAD) pipeline employing computer vision (CV) and Natural Language Processing (NLP). It was trained and evaluated on the publicly available MIMIC-CXR dataset. We perform image quality assessment, view labelling, and segmentation-based cardiomegaly severity classification. We use the output of the severity classification for large language model-based report generation. Four board-certified radiologists assessed the output accuracy of our CAD pipeline. Across the dataset composed of 377,100 CXR images and 227,827 free-text radiology reports, our system identified 0.18% of cases with mixed-sex mentions, 0.02% of poor quality images (F1 = 0.81), and 0.28% of wrongly labelled views (accuracy 99.4%). We assigned views for 4.18% of images which have unlabelled views. Our binary cardiomegaly classification model has 95.2% accuracy. The inter-radiologist agreement on evaluating the generated report's semantics and correctness for radiologist-MIMIC is 0.62 (strict agreement) and 0.85 (relaxed agreement) similar to the radiologist-CAD agreement of 0.55 (strict) and 0.93 (relaxed). Our work found and corrected several incorrect or missing metadata annotations for the MIMIC-CXR dataset. The performance of our CAD system suggests performance on par with human radiologists. Future improvements revolve around improved text generation and the development of CV tools for other diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信