SurGrID:通过场景图到图像扩散的可控手术模拟。

IF 2.3 3区 医学 Q3 ENGINEERING, BIOMEDICAL
Yannik Frisch, Ssharvien Kumar Sivakumar, Çağhan Köksal, Elsa Böhm, Felix Wagner, Adrian Gericke, Ghazal Ghazaei, Anirban Mukhopadhyay
{"title":"SurGrID:通过场景图到图像扩散的可控手术模拟。","authors":"Yannik Frisch, Ssharvien Kumar Sivakumar, Çağhan Köksal, Elsa Böhm, Felix Wagner, Adrian Gericke, Ghazal Ghazaei, Anirban Mukhopadhyay","doi":"10.1007/s11548-025-03397-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Surgical simulation offers a promising addition to conventional surgical training. However, available simulation tools lack photorealism and rely on hard-coded behaviour. Denoising Diffusion Models are a promising alternative for high-fidelity image synthesis, but existing state-of-the-art conditioning methods fall short in providing precise control or interactivity over the generated scenes.</p><p><strong>Methods: </strong>We introduce SurGrID, a Scene Graph to Image Diffusion Model, allowing for controllable surgical scene synthesis by leveraging Scene Graphs. These graphs encode a surgical scene's components' spatial and semantic information, which are then translated into an intermediate representation using our novel pre-training step that explicitly captures local and global information.</p><p><strong>Results: </strong>Our proposed method improves the fidelity of generated images and their coherence with the graph input over the state of the art. Further, we demonstrate the simulation's realism and controllability in a user assessment study involving clinical experts.</p><p><strong>Conclusion: </strong>Scene Graphs can be effectively used for precise and interactive conditioning of Denoising Diffusion Models for simulating surgical scenes, enabling high-fidelity and interactive control over the generated content.</p>","PeriodicalId":51251,"journal":{"name":"International Journal of Computer Assisted Radiology and Surgery","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SurGrID: controllable surgical simulation via Scene Graph to Image Diffusion.\",\"authors\":\"Yannik Frisch, Ssharvien Kumar Sivakumar, Çağhan Köksal, Elsa Böhm, Felix Wagner, Adrian Gericke, Ghazal Ghazaei, Anirban Mukhopadhyay\",\"doi\":\"10.1007/s11548-025-03397-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Surgical simulation offers a promising addition to conventional surgical training. However, available simulation tools lack photorealism and rely on hard-coded behaviour. Denoising Diffusion Models are a promising alternative for high-fidelity image synthesis, but existing state-of-the-art conditioning methods fall short in providing precise control or interactivity over the generated scenes.</p><p><strong>Methods: </strong>We introduce SurGrID, a Scene Graph to Image Diffusion Model, allowing for controllable surgical scene synthesis by leveraging Scene Graphs. These graphs encode a surgical scene's components' spatial and semantic information, which are then translated into an intermediate representation using our novel pre-training step that explicitly captures local and global information.</p><p><strong>Results: </strong>Our proposed method improves the fidelity of generated images and their coherence with the graph input over the state of the art. Further, we demonstrate the simulation's realism and controllability in a user assessment study involving clinical experts.</p><p><strong>Conclusion: </strong>Scene Graphs can be effectively used for precise and interactive conditioning of Denoising Diffusion Models for simulating surgical scenes, enabling high-fidelity and interactive control over the generated content.</p>\",\"PeriodicalId\":51251,\"journal\":{\"name\":\"International Journal of Computer Assisted Radiology and Surgery\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Assisted Radiology and Surgery\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11548-025-03397-y\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Assisted Radiology and Surgery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11548-025-03397-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:手术模拟为常规外科训练提供了一个有希望的补充。然而,现有的模拟工具缺乏真实感,并且依赖于硬编码的行为。去噪扩散模型是高保真图像合成的一种很有前途的替代方法,但现有的最先进的调节方法在提供对生成场景的精确控制或交互性方面存在不足。方法:我们引入SurGrID,一个场景图到图像扩散模型,允许利用场景图进行可控的手术场景合成。这些图编码了手术场景组件的空间和语义信息,然后使用我们新颖的预训练步骤将其转换为中间表示,该步骤显式捕获局部和全局信息。结果:我们提出的方法提高了生成图像的保真度及其与图形输入的一致性。此外,我们在涉及临床专家的用户评估研究中展示了模拟的现实性和可控性。结论:场景图可以有效地用于模拟手术场景的去噪扩散模型的精确交互式调理,实现对生成内容的高保真交互式控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SurGrID: controllable surgical simulation via Scene Graph to Image Diffusion.

Purpose: Surgical simulation offers a promising addition to conventional surgical training. However, available simulation tools lack photorealism and rely on hard-coded behaviour. Denoising Diffusion Models are a promising alternative for high-fidelity image synthesis, but existing state-of-the-art conditioning methods fall short in providing precise control or interactivity over the generated scenes.

Methods: We introduce SurGrID, a Scene Graph to Image Diffusion Model, allowing for controllable surgical scene synthesis by leveraging Scene Graphs. These graphs encode a surgical scene's components' spatial and semantic information, which are then translated into an intermediate representation using our novel pre-training step that explicitly captures local and global information.

Results: Our proposed method improves the fidelity of generated images and their coherence with the graph input over the state of the art. Further, we demonstrate the simulation's realism and controllability in a user assessment study involving clinical experts.

Conclusion: Scene Graphs can be effectively used for precise and interactive conditioning of Denoising Diffusion Models for simulating surgical scenes, enabling high-fidelity and interactive control over the generated content.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computer Assisted Radiology and Surgery
International Journal of Computer Assisted Radiology and Surgery ENGINEERING, BIOMEDICAL-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
5.90
自引率
6.70%
发文量
243
审稿时长
6-12 weeks
期刊介绍: The International Journal for Computer Assisted Radiology and Surgery (IJCARS) is a peer-reviewed journal that provides a platform for closing the gap between medical and technical disciplines, and encourages interdisciplinary research and development activities in an international environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信