Xinda Li, Xiaoyi Luo, Bin Wang, Lei Fu, Xi Chen, Yu Lu
{"title":"Sudapyridine (WX-081)通过靶向ATP合酶和上调宿主先天免疫抑制结核分枝杆菌。","authors":"Xinda Li, Xiaoyi Luo, Bin Wang, Lei Fu, Xi Chen, Yu Lu","doi":"10.1128/msphere.00149-25","DOIUrl":null,"url":null,"abstract":"<p><p>Drug-resistant tuberculosis (DR-TB) urgently requires safer, more accessible alternatives to bedaquiline (BDQ), which faces critical flaws like cardiotoxicity, high costs, and emerging resistance. WX-081, a promising BDQ alternative, has demonstrated superior anti-TB activity and improved safety in clinical studies. However, its mechanism of action remains unexplored, underscoring the need for further research to optimize its potential in advancing global TB elimination efforts. This study reveals WX-081's dual mechanisms: targeting <i>atpE</i> to disrupt ATP synthase and proton motive force via resistance screening, gene sequencing, and functional assays while enhancing host immunity through macrophage transcriptomics. Molecular docking confirmed <i>atpE</i> binding sites, and immune activation pathways (NF-κB/MAPK) were identified, positioning WX-081 as a potent, safe anti-DR-TB candidate despite unresolved mechanistic details.IMPORTANCEBedaquiline, a key drug for drug-resistant tuberculosis, is restricted by safety issues impacting its clinical utility. Its next-generation alternative, WX-081, has advanced to Phase III trials but lacks in-depth studies on its mechanism and host immune-modulatory effects, necessitating further research before broad clinical adoption.</p>","PeriodicalId":19052,"journal":{"name":"mSphere","volume":" ","pages":"e0014925"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12188713/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sudapyridine (WX-081) inhibits <i>Mycobacterium tuberculosis</i> by targeting ATP synthase and upregulating host innate immunity.\",\"authors\":\"Xinda Li, Xiaoyi Luo, Bin Wang, Lei Fu, Xi Chen, Yu Lu\",\"doi\":\"10.1128/msphere.00149-25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Drug-resistant tuberculosis (DR-TB) urgently requires safer, more accessible alternatives to bedaquiline (BDQ), which faces critical flaws like cardiotoxicity, high costs, and emerging resistance. WX-081, a promising BDQ alternative, has demonstrated superior anti-TB activity and improved safety in clinical studies. However, its mechanism of action remains unexplored, underscoring the need for further research to optimize its potential in advancing global TB elimination efforts. This study reveals WX-081's dual mechanisms: targeting <i>atpE</i> to disrupt ATP synthase and proton motive force via resistance screening, gene sequencing, and functional assays while enhancing host immunity through macrophage transcriptomics. Molecular docking confirmed <i>atpE</i> binding sites, and immune activation pathways (NF-κB/MAPK) were identified, positioning WX-081 as a potent, safe anti-DR-TB candidate despite unresolved mechanistic details.IMPORTANCEBedaquiline, a key drug for drug-resistant tuberculosis, is restricted by safety issues impacting its clinical utility. Its next-generation alternative, WX-081, has advanced to Phase III trials but lacks in-depth studies on its mechanism and host immune-modulatory effects, necessitating further research before broad clinical adoption.</p>\",\"PeriodicalId\":19052,\"journal\":{\"name\":\"mSphere\",\"volume\":\" \",\"pages\":\"e0014925\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12188713/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"mSphere\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/msphere.00149-25\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"mSphere","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/msphere.00149-25","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Sudapyridine (WX-081) inhibits Mycobacterium tuberculosis by targeting ATP synthase and upregulating host innate immunity.
Drug-resistant tuberculosis (DR-TB) urgently requires safer, more accessible alternatives to bedaquiline (BDQ), which faces critical flaws like cardiotoxicity, high costs, and emerging resistance. WX-081, a promising BDQ alternative, has demonstrated superior anti-TB activity and improved safety in clinical studies. However, its mechanism of action remains unexplored, underscoring the need for further research to optimize its potential in advancing global TB elimination efforts. This study reveals WX-081's dual mechanisms: targeting atpE to disrupt ATP synthase and proton motive force via resistance screening, gene sequencing, and functional assays while enhancing host immunity through macrophage transcriptomics. Molecular docking confirmed atpE binding sites, and immune activation pathways (NF-κB/MAPK) were identified, positioning WX-081 as a potent, safe anti-DR-TB candidate despite unresolved mechanistic details.IMPORTANCEBedaquiline, a key drug for drug-resistant tuberculosis, is restricted by safety issues impacting its clinical utility. Its next-generation alternative, WX-081, has advanced to Phase III trials but lacks in-depth studies on its mechanism and host immune-modulatory effects, necessitating further research before broad clinical adoption.
期刊介绍:
mSphere™ is a multi-disciplinary open-access journal that will focus on rapid publication of fundamental contributions to our understanding of microbiology. Its scope will reflect the immense range of fields within the microbial sciences, creating new opportunities for researchers to share findings that are transforming our understanding of human health and disease, ecosystems, neuroscience, agriculture, energy production, climate change, evolution, biogeochemical cycling, and food and drug production. Submissions will be encouraged of all high-quality work that makes fundamental contributions to our understanding of microbiology. mSphere™ will provide streamlined decisions, while carrying on ASM''s tradition for rigorous peer review.