Jeong Min Lee , Jae Sook Kang , Yong Ryoul Yang , Ji Hoon Park
{"title":"重组CLCF1蛋白与人血清白蛋白融合在动物细胞中的高产生产及其对啮齿动物的毒性评价。","authors":"Jeong Min Lee , Jae Sook Kang , Yong Ryoul Yang , Ji Hoon Park","doi":"10.1016/j.pep.2025.106740","DOIUrl":null,"url":null,"abstract":"<div><div>Recombinant protein based biopharmaceutics have been developed as therapeutics of various diseases, especially cancer, diabetes, infectious diseases, and autoimmune diseases. In this study, we conducted a study for the development of biopharmaceuticals based on the CLCF1 protein. First, we established strategies for producing recombinant human CLCF1 protein by transient gene expression in ExpiCHO-S™ Cells and Expi293F™ Cells. For the secretion of CLCF1 protein, we established strategies that human CRLF1 or sCNTFR with CLCF1 protein were co-expressed. As a result, the CLCF1 protein formed a complex with CRLF1 or sCNTFR, which was successfully secreted. Furthermore, the productivity of CLCF1 protein was significantly increased. The ratio of co-transfected plasmids, temperature, CO<sub>2</sub> level and time of harvest were explored, so that the productivity of CLCF1 was remarkably increased 7-fold from 3 mg/L to 22 mg/L. Next, we generated recombinant CLCF1 fusion protein with HSA (Albumin CLCF1) considering the improvement of pharmacokinetic properties and the proven production method in GMP facilities. We evaluated the biological activity of various CLCF1 proteins. In consideration of protein productivity, physical properties, and efficacy, we conducted a single intravenous administration of 4 types of proteins in Sprague-Dawley rats to evaluate the short-term toxicity. As a result, no toxicity related CLCF1 proteins was observed based on the behavior sign observation and body weight changes. In conclusion, we successfully established the strategies of production and characterization of biologically active recombinant CLCF1 proteins in mammalian cells as potential biotherapeutics.</div></div>","PeriodicalId":20757,"journal":{"name":"Protein expression and purification","volume":"233 ","pages":"Article 106740"},"PeriodicalIF":1.4000,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-yield production of recombinant CLCF1 protein fused with human serum albumin in animal cells and toxicity evaluation in rodents\",\"authors\":\"Jeong Min Lee , Jae Sook Kang , Yong Ryoul Yang , Ji Hoon Park\",\"doi\":\"10.1016/j.pep.2025.106740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recombinant protein based biopharmaceutics have been developed as therapeutics of various diseases, especially cancer, diabetes, infectious diseases, and autoimmune diseases. In this study, we conducted a study for the development of biopharmaceuticals based on the CLCF1 protein. First, we established strategies for producing recombinant human CLCF1 protein by transient gene expression in ExpiCHO-S™ Cells and Expi293F™ Cells. For the secretion of CLCF1 protein, we established strategies that human CRLF1 or sCNTFR with CLCF1 protein were co-expressed. As a result, the CLCF1 protein formed a complex with CRLF1 or sCNTFR, which was successfully secreted. Furthermore, the productivity of CLCF1 protein was significantly increased. The ratio of co-transfected plasmids, temperature, CO<sub>2</sub> level and time of harvest were explored, so that the productivity of CLCF1 was remarkably increased 7-fold from 3 mg/L to 22 mg/L. Next, we generated recombinant CLCF1 fusion protein with HSA (Albumin CLCF1) considering the improvement of pharmacokinetic properties and the proven production method in GMP facilities. We evaluated the biological activity of various CLCF1 proteins. In consideration of protein productivity, physical properties, and efficacy, we conducted a single intravenous administration of 4 types of proteins in Sprague-Dawley rats to evaluate the short-term toxicity. As a result, no toxicity related CLCF1 proteins was observed based on the behavior sign observation and body weight changes. In conclusion, we successfully established the strategies of production and characterization of biologically active recombinant CLCF1 proteins in mammalian cells as potential biotherapeutics.</div></div>\",\"PeriodicalId\":20757,\"journal\":{\"name\":\"Protein expression and purification\",\"volume\":\"233 \",\"pages\":\"Article 106740\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein expression and purification\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1046592825000828\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein expression and purification","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1046592825000828","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
High-yield production of recombinant CLCF1 protein fused with human serum albumin in animal cells and toxicity evaluation in rodents
Recombinant protein based biopharmaceutics have been developed as therapeutics of various diseases, especially cancer, diabetes, infectious diseases, and autoimmune diseases. In this study, we conducted a study for the development of biopharmaceuticals based on the CLCF1 protein. First, we established strategies for producing recombinant human CLCF1 protein by transient gene expression in ExpiCHO-S™ Cells and Expi293F™ Cells. For the secretion of CLCF1 protein, we established strategies that human CRLF1 or sCNTFR with CLCF1 protein were co-expressed. As a result, the CLCF1 protein formed a complex with CRLF1 or sCNTFR, which was successfully secreted. Furthermore, the productivity of CLCF1 protein was significantly increased. The ratio of co-transfected plasmids, temperature, CO2 level and time of harvest were explored, so that the productivity of CLCF1 was remarkably increased 7-fold from 3 mg/L to 22 mg/L. Next, we generated recombinant CLCF1 fusion protein with HSA (Albumin CLCF1) considering the improvement of pharmacokinetic properties and the proven production method in GMP facilities. We evaluated the biological activity of various CLCF1 proteins. In consideration of protein productivity, physical properties, and efficacy, we conducted a single intravenous administration of 4 types of proteins in Sprague-Dawley rats to evaluate the short-term toxicity. As a result, no toxicity related CLCF1 proteins was observed based on the behavior sign observation and body weight changes. In conclusion, we successfully established the strategies of production and characterization of biologically active recombinant CLCF1 proteins in mammalian cells as potential biotherapeutics.
期刊介绍:
Protein Expression and Purification is an international journal providing a forum for the dissemination of new information on protein expression, extraction, purification, characterization, and/or applications using conventional biochemical and/or modern molecular biological approaches and methods, which are of broad interest to the field. The journal does not typically publish repetitive examples of protein expression and purification involving standard, well-established, methods. However, exceptions might include studies on important and/or difficult to express and/or purify proteins and/or studies that include extensive protein characterization, which provide new, previously unpublished information.