工程合成聚乙二醇水凝胶以可调生物物理性质模拟植入周外胚层形态发生。

Q4 Biochemistry, Genetics and Molecular Biology
Michael Patrick Seitz, Zhen Ma, Era Jain
{"title":"工程合成聚乙二醇水凝胶以可调生物物理性质模拟植入周外胚层形态发生。","authors":"Michael Patrick Seitz, Zhen Ma, Era Jain","doi":"10.1007/7651_2025_640","DOIUrl":null,"url":null,"abstract":"<p><p>Implantation triggers critical morphological transformations in the embryo, where the epiblast transitions from a cluster of unpolarized cells into a highly organized, polarized epithelium characterized by a central lumen. Human pluripotent stem cells (hPSCs) are valuable models for studying this process, but conventional matrices like Matrigel have significant limitations, including variability and poor control over mechanical properties. To overcome these challenges, we developed a synthetic polyethylene glycol (PEG) hydrogel system with tunable mechanical stiffness to model peri-implantation epiblast morphogenesis.Our platform enables hPSCs to form unpolarized 3D aggregates that undergo stiffness-dependent transformation into lumen-forming, apicobasal-polarized structures resembling epiblast morphogenesis during peri-implantation. Unlike natural ECMs, PEG hydrogels maintain hPSC pluripotency for extended periods and support trilineage differentiation upon induction. The modular hydrogel design facilitates targeted mechanistic studies on the biophysical and biochemical regulation of cell morphogenesis. We present a comprehensive protocol for fabricating PEG hydrogels, encapsulating hPSCs, and assessing cell polarity, lumen formation, and pluripotency using immunostaining and RT-PCR. This platform provides a robust, cost-effective, and versatile tool for advancing developmental biology and regenerative medicine.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering Synthetic PEG Hydrogels to Model Peri-implantation Epiblast Morphogenesis with Tunable Biophysical Properties.\",\"authors\":\"Michael Patrick Seitz, Zhen Ma, Era Jain\",\"doi\":\"10.1007/7651_2025_640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Implantation triggers critical morphological transformations in the embryo, where the epiblast transitions from a cluster of unpolarized cells into a highly organized, polarized epithelium characterized by a central lumen. Human pluripotent stem cells (hPSCs) are valuable models for studying this process, but conventional matrices like Matrigel have significant limitations, including variability and poor control over mechanical properties. To overcome these challenges, we developed a synthetic polyethylene glycol (PEG) hydrogel system with tunable mechanical stiffness to model peri-implantation epiblast morphogenesis.Our platform enables hPSCs to form unpolarized 3D aggregates that undergo stiffness-dependent transformation into lumen-forming, apicobasal-polarized structures resembling epiblast morphogenesis during peri-implantation. Unlike natural ECMs, PEG hydrogels maintain hPSC pluripotency for extended periods and support trilineage differentiation upon induction. The modular hydrogel design facilitates targeted mechanistic studies on the biophysical and biochemical regulation of cell morphogenesis. We present a comprehensive protocol for fabricating PEG hydrogels, encapsulating hPSCs, and assessing cell polarity, lumen formation, and pluripotency using immunostaining and RT-PCR. This platform provides a robust, cost-effective, and versatile tool for advancing developmental biology and regenerative medicine.</p>\",\"PeriodicalId\":18490,\"journal\":{\"name\":\"Methods in molecular biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in molecular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/7651_2025_640\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/7651_2025_640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

着床触发胚胎的关键形态转变,其中外胚层从一簇未极化的细胞转变为高度组织化的极化上皮,其特征是中心管腔。人类多能干细胞(hPSCs)是研究这一过程的有价值的模型,但传统的基质(如Matrigel)有很大的局限性,包括可变性和对机械性能的控制能力差。为了克服这些挑战,我们开发了一种具有可调机械刚度的合成聚乙二醇(PEG)水凝胶系统来模拟着床周围外胚层的形态发生。我们的平台使造血干细胞能够形成非极化的3D聚集体,在植入周期间,这些聚集体经历刚度依赖性转化为管腔形成、尖基底极化结构,类似于外胚层形态形成。与天然ecm不同,PEG水凝胶可以长时间维持hPSC的多能性,并支持诱导后的三龄分化。模块化的水凝胶设计有助于对细胞形态发生的生物物理和生化调节进行有针对性的机制研究。我们提出了一种综合方案,用于制造PEG水凝胶,封装hPSCs,并使用免疫染色和RT-PCR评估细胞极性,管腔形成和多能性。该平台为推进发育生物学和再生医学提供了一个强大的、具有成本效益的、多功能的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Engineering Synthetic PEG Hydrogels to Model Peri-implantation Epiblast Morphogenesis with Tunable Biophysical Properties.

Implantation triggers critical morphological transformations in the embryo, where the epiblast transitions from a cluster of unpolarized cells into a highly organized, polarized epithelium characterized by a central lumen. Human pluripotent stem cells (hPSCs) are valuable models for studying this process, but conventional matrices like Matrigel have significant limitations, including variability and poor control over mechanical properties. To overcome these challenges, we developed a synthetic polyethylene glycol (PEG) hydrogel system with tunable mechanical stiffness to model peri-implantation epiblast morphogenesis.Our platform enables hPSCs to form unpolarized 3D aggregates that undergo stiffness-dependent transformation into lumen-forming, apicobasal-polarized structures resembling epiblast morphogenesis during peri-implantation. Unlike natural ECMs, PEG hydrogels maintain hPSC pluripotency for extended periods and support trilineage differentiation upon induction. The modular hydrogel design facilitates targeted mechanistic studies on the biophysical and biochemical regulation of cell morphogenesis. We present a comprehensive protocol for fabricating PEG hydrogels, encapsulating hPSCs, and assessing cell polarity, lumen formation, and pluripotency using immunostaining and RT-PCR. This platform provides a robust, cost-effective, and versatile tool for advancing developmental biology and regenerative medicine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Methods in molecular biology
Methods in molecular biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
2.00
自引率
0.00%
发文量
3536
期刊介绍: For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信