Gerrald A Lodewijk, Sayaka Kozuki, Carly Guiltinan, Benjamin R Topacio, S Ali Shariati
{"title":"基于crispr的表观基因组编辑工具在工程可编程胚胎模型中的应用","authors":"Gerrald A Lodewijk, Sayaka Kozuki, Carly Guiltinan, Benjamin R Topacio, S Ali Shariati","doi":"10.1007/7651_2025_637","DOIUrl":null,"url":null,"abstract":"<p><p>Stem cell-based embryo models (SEMs) have the potential to transform our understanding of early human embryogenesis. A critical step in engineering SEMs is the generation of the major cell types that compose preimplantation embryos including two primary extraembryonic lineages: (i) trophoblast cells, which are crucial for implantation and the establishment of maternal-fetal exchange, and (ii) hypoblast cells, which contribute to yolk sac formation. In addition, both cell types provide key signaling cues necessary for embryonic development. CRISPR-based epigenome editors are programmable devices that allow for efficient and precise activation (CRISPRa) or repression (CRISPRi) of cell fate-determining factors by modulating endogenous regulatory elements. Here, we present a step-by-step method to implement CRISPRa for controlling cell fate in embryonic stem cells based on our work in generation of CRISPR-programmed mouse embryo models.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of CRISPR-Based Epigenome Editing Tools for Engineering Programmable Embryo Models.\",\"authors\":\"Gerrald A Lodewijk, Sayaka Kozuki, Carly Guiltinan, Benjamin R Topacio, S Ali Shariati\",\"doi\":\"10.1007/7651_2025_637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stem cell-based embryo models (SEMs) have the potential to transform our understanding of early human embryogenesis. A critical step in engineering SEMs is the generation of the major cell types that compose preimplantation embryos including two primary extraembryonic lineages: (i) trophoblast cells, which are crucial for implantation and the establishment of maternal-fetal exchange, and (ii) hypoblast cells, which contribute to yolk sac formation. In addition, both cell types provide key signaling cues necessary for embryonic development. CRISPR-based epigenome editors are programmable devices that allow for efficient and precise activation (CRISPRa) or repression (CRISPRi) of cell fate-determining factors by modulating endogenous regulatory elements. Here, we present a step-by-step method to implement CRISPRa for controlling cell fate in embryonic stem cells based on our work in generation of CRISPR-programmed mouse embryo models.</p>\",\"PeriodicalId\":18490,\"journal\":{\"name\":\"Methods in molecular biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in molecular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/7651_2025_637\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/7651_2025_637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Application of CRISPR-Based Epigenome Editing Tools for Engineering Programmable Embryo Models.
Stem cell-based embryo models (SEMs) have the potential to transform our understanding of early human embryogenesis. A critical step in engineering SEMs is the generation of the major cell types that compose preimplantation embryos including two primary extraembryonic lineages: (i) trophoblast cells, which are crucial for implantation and the establishment of maternal-fetal exchange, and (ii) hypoblast cells, which contribute to yolk sac formation. In addition, both cell types provide key signaling cues necessary for embryonic development. CRISPR-based epigenome editors are programmable devices that allow for efficient and precise activation (CRISPRa) or repression (CRISPRi) of cell fate-determining factors by modulating endogenous regulatory elements. Here, we present a step-by-step method to implement CRISPRa for controlling cell fate in embryonic stem cells based on our work in generation of CRISPR-programmed mouse embryo models.
期刊介绍:
For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.