Jean-Baptiste Vergnes, Benoit Roger, Richard Iggo, Harald Wodrich
{"title":"先进的病毒基因组体外Cas9编辑(建议):一种对具有大转基因的腺病毒和载体基因组进行无痕和无限操作的隔夜方法。","authors":"Jean-Baptiste Vergnes, Benoit Roger, Richard Iggo, Harald Wodrich","doi":"10.1128/jvi.02265-24","DOIUrl":null,"url":null,"abstract":"<p><p>The size and complexity of large viral genomes limit the technical possibilities for genome manipulations in fundamental research and medical or technological applications. State-of-the-art recombineering in bacteria has partially overcome this limit but remains a time-consuming and complex procedure requiring specialist expertise. Here, we describe a simplified and highly efficient <i>in vitro</i> protocol for unlimited and traceless manipulation applicable to large viral genomes from DNA viruses using a combination of CRISPR/Cas9 cleavage and <i>in vitro</i> DNA assembly. We successfully used the protocol to manipulate adenovirus genomes, showing that genome rescue from viruses, insertions, deletions, and mutagenesis can be performed in a simple overnight procedure in a standard laboratory setting without the need for advanced knowledge of molecular biology. Finally, we use our approach to demonstrate the <i>de novo</i>, multi-step construction of an adenovirus vector suitable for delivering very large transgenes for gene editing.IMPORTANCEThe 36 kb size of the adenoviral genome has long been a deterrent to the construction of adenoviral mutants by scientists wishing to study the virus itself or to construct adenoviral vectors for cell biology and gene therapy. Most previous techniques, such as recombineering and yeast gap repair, impress more by their elegance than by their ease. In this paper, we use Cas9 ribonucleoprotein particles (RNPs) to target cleavage to specific sites in an adenoviral plasmid, then repair the break by Gibson assembly. Gibson assembly with synthetic DNA fragments has transformed basic cloning. Combining it with Cas9 RNPs, which act like highly specific restriction enzymes, makes adenoviral mutagenesis as easy as traditional plasmid cloning. We have used the approach to modify multiple sites in the adenoviral genome, but it could be applied to any large DNA virus for which the genome can be cloned in a plasmid.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0226524"},"PeriodicalIF":3.8000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12172474/pdf/","citationCount":"0","resultStr":"{\"title\":\"<u>Ad</u>vanced <u>v</u>iral genome <i><u>i</u>n vitro</i> <u>C</u>as9 <u>e</u>diting (AdVICE): an overnight method for traceless and limitless manipulation of adenoviral and vector genomes with large transgenes.\",\"authors\":\"Jean-Baptiste Vergnes, Benoit Roger, Richard Iggo, Harald Wodrich\",\"doi\":\"10.1128/jvi.02265-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The size and complexity of large viral genomes limit the technical possibilities for genome manipulations in fundamental research and medical or technological applications. State-of-the-art recombineering in bacteria has partially overcome this limit but remains a time-consuming and complex procedure requiring specialist expertise. Here, we describe a simplified and highly efficient <i>in vitro</i> protocol for unlimited and traceless manipulation applicable to large viral genomes from DNA viruses using a combination of CRISPR/Cas9 cleavage and <i>in vitro</i> DNA assembly. We successfully used the protocol to manipulate adenovirus genomes, showing that genome rescue from viruses, insertions, deletions, and mutagenesis can be performed in a simple overnight procedure in a standard laboratory setting without the need for advanced knowledge of molecular biology. Finally, we use our approach to demonstrate the <i>de novo</i>, multi-step construction of an adenovirus vector suitable for delivering very large transgenes for gene editing.IMPORTANCEThe 36 kb size of the adenoviral genome has long been a deterrent to the construction of adenoviral mutants by scientists wishing to study the virus itself or to construct adenoviral vectors for cell biology and gene therapy. Most previous techniques, such as recombineering and yeast gap repair, impress more by their elegance than by their ease. In this paper, we use Cas9 ribonucleoprotein particles (RNPs) to target cleavage to specific sites in an adenoviral plasmid, then repair the break by Gibson assembly. Gibson assembly with synthetic DNA fragments has transformed basic cloning. Combining it with Cas9 RNPs, which act like highly specific restriction enzymes, makes adenoviral mutagenesis as easy as traditional plasmid cloning. We have used the approach to modify multiple sites in the adenoviral genome, but it could be applied to any large DNA virus for which the genome can be cloned in a plasmid.</p>\",\"PeriodicalId\":17583,\"journal\":{\"name\":\"Journal of Virology\",\"volume\":\" \",\"pages\":\"e0226524\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12172474/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Virology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1128/jvi.02265-24\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/jvi.02265-24","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
Advanced viral genome in vitroCas9 editing (AdVICE): an overnight method for traceless and limitless manipulation of adenoviral and vector genomes with large transgenes.
The size and complexity of large viral genomes limit the technical possibilities for genome manipulations in fundamental research and medical or technological applications. State-of-the-art recombineering in bacteria has partially overcome this limit but remains a time-consuming and complex procedure requiring specialist expertise. Here, we describe a simplified and highly efficient in vitro protocol for unlimited and traceless manipulation applicable to large viral genomes from DNA viruses using a combination of CRISPR/Cas9 cleavage and in vitro DNA assembly. We successfully used the protocol to manipulate adenovirus genomes, showing that genome rescue from viruses, insertions, deletions, and mutagenesis can be performed in a simple overnight procedure in a standard laboratory setting without the need for advanced knowledge of molecular biology. Finally, we use our approach to demonstrate the de novo, multi-step construction of an adenovirus vector suitable for delivering very large transgenes for gene editing.IMPORTANCEThe 36 kb size of the adenoviral genome has long been a deterrent to the construction of adenoviral mutants by scientists wishing to study the virus itself or to construct adenoviral vectors for cell biology and gene therapy. Most previous techniques, such as recombineering and yeast gap repair, impress more by their elegance than by their ease. In this paper, we use Cas9 ribonucleoprotein particles (RNPs) to target cleavage to specific sites in an adenoviral plasmid, then repair the break by Gibson assembly. Gibson assembly with synthetic DNA fragments has transformed basic cloning. Combining it with Cas9 RNPs, which act like highly specific restriction enzymes, makes adenoviral mutagenesis as easy as traditional plasmid cloning. We have used the approach to modify multiple sites in the adenoviral genome, but it could be applied to any large DNA virus for which the genome can be cloned in a plasmid.
期刊介绍:
Journal of Virology (JVI) explores the nature of the viruses of animals, archaea, bacteria, fungi, plants, and protozoa. We welcome papers on virion structure and assembly, viral genome replication and regulation of gene expression, genetic diversity and evolution, virus-cell interactions, cellular responses to infection, transformation and oncogenesis, gene delivery, viral pathogenesis and immunity, and vaccines and antiviral agents.