XVir:用于从癌症样本中识别病毒读取的基于转换器的架构。

IF 1.4 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS
Shorya Consul, John Robertson, Haris Vikalo
{"title":"XVir:用于从癌症样本中识别病毒读取的基于转换器的架构。","authors":"Shorya Consul, John Robertson, Haris Vikalo","doi":"10.1089/cmb.2025.0075","DOIUrl":null,"url":null,"abstract":"<p><p>It is estimated that approximately 15% of cancers worldwide can be linked to viral infections. The viruses that can cause or increase the risk of cancer include human papillomavirus, hepatitis B and C viruses, Epstein-Barr virus, and human immunodeficiency virus, to name a few. The computational analysis of the massive amounts of tumor DNA data, whose collection is enabled by the advancements in sequencing technologies, has allowed studies of the potential association between cancers and viral pathogens. However, the high diversity of oncoviral families makes reliable detection of viral DNA difficult, and the training of machine learning models that enable such analysis computationally challenging. We introduce XVir, a data pipeline that deploys a transformer-based deep learning architecture to reliably identify viral DNA present in human tumors. XVir is trained on a mix of sequencing reads coming from viral and human genomes, resulting in a model capable of robust detection of potentially mutated viral DNA across a range of experimental settings. Results on semi-experimental data demonstrate that XVir is able to achieve high classification accuracy, generally outperforming state-of-the-art competing methods. In particular, it retains high accuracy even when faced with diverse viral populations while being significantly faster to train than other large deep learning-based classifiers.</p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"XVir: A Transformer-Based Architecture for Identifying Viral Reads from Cancer Samples.\",\"authors\":\"Shorya Consul, John Robertson, Haris Vikalo\",\"doi\":\"10.1089/cmb.2025.0075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It is estimated that approximately 15% of cancers worldwide can be linked to viral infections. The viruses that can cause or increase the risk of cancer include human papillomavirus, hepatitis B and C viruses, Epstein-Barr virus, and human immunodeficiency virus, to name a few. The computational analysis of the massive amounts of tumor DNA data, whose collection is enabled by the advancements in sequencing technologies, has allowed studies of the potential association between cancers and viral pathogens. However, the high diversity of oncoviral families makes reliable detection of viral DNA difficult, and the training of machine learning models that enable such analysis computationally challenging. We introduce XVir, a data pipeline that deploys a transformer-based deep learning architecture to reliably identify viral DNA present in human tumors. XVir is trained on a mix of sequencing reads coming from viral and human genomes, resulting in a model capable of robust detection of potentially mutated viral DNA across a range of experimental settings. Results on semi-experimental data demonstrate that XVir is able to achieve high classification accuracy, generally outperforming state-of-the-art competing methods. In particular, it retains high accuracy even when faced with diverse viral populations while being significantly faster to train than other large deep learning-based classifiers.</p>\",\"PeriodicalId\":15526,\"journal\":{\"name\":\"Journal of Computational Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/cmb.2025.0075\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/cmb.2025.0075","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

据估计,全世界约有15%的癌症与病毒感染有关。可以导致或增加癌症风险的病毒包括人类乳头瘤病毒、乙型和丙型肝炎病毒、爱泼斯坦-巴尔病毒和人类免疫缺陷病毒,仅举几例。由于测序技术的进步,对大量肿瘤DNA数据的计算分析使得研究癌症和病毒病原体之间的潜在联系成为可能。然而,肿瘤病毒家族的高度多样性使得病毒DNA的可靠检测变得困难,并且使这种分析具有计算挑战性的机器学习模型的训练。我们介绍了XVir,这是一个数据管道,它部署了基于转换器的深度学习架构,以可靠地识别人类肿瘤中存在的病毒DNA。XVir是在来自病毒和人类基因组的测序读数的混合上进行训练的,从而产生一个能够在一系列实验环境中检测潜在突变病毒DNA的模型。半实验数据的结果表明,XVir能够实现较高的分类精度,通常优于最先进的竞争方法。特别是,即使面对不同的病毒群,它也保持了很高的准确性,同时比其他基于深度学习的大型分类器训练速度要快得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
XVir: A Transformer-Based Architecture for Identifying Viral Reads from Cancer Samples.

It is estimated that approximately 15% of cancers worldwide can be linked to viral infections. The viruses that can cause or increase the risk of cancer include human papillomavirus, hepatitis B and C viruses, Epstein-Barr virus, and human immunodeficiency virus, to name a few. The computational analysis of the massive amounts of tumor DNA data, whose collection is enabled by the advancements in sequencing technologies, has allowed studies of the potential association between cancers and viral pathogens. However, the high diversity of oncoviral families makes reliable detection of viral DNA difficult, and the training of machine learning models that enable such analysis computationally challenging. We introduce XVir, a data pipeline that deploys a transformer-based deep learning architecture to reliably identify viral DNA present in human tumors. XVir is trained on a mix of sequencing reads coming from viral and human genomes, resulting in a model capable of robust detection of potentially mutated viral DNA across a range of experimental settings. Results on semi-experimental data demonstrate that XVir is able to achieve high classification accuracy, generally outperforming state-of-the-art competing methods. In particular, it retains high accuracy even when faced with diverse viral populations while being significantly faster to train than other large deep learning-based classifiers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Biology
Journal of Computational Biology 生物-计算机:跨学科应用
CiteScore
3.60
自引率
5.90%
发文量
113
审稿时长
6-12 weeks
期刊介绍: Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics. Journal of Computational Biology coverage includes: -Genomics -Mathematical modeling and simulation -Distributed and parallel biological computing -Designing biological databases -Pattern matching and pattern detection -Linking disparate databases and data -New tools for computational biology -Relational and object-oriented database technology for bioinformatics -Biological expert system design and use -Reasoning by analogy, hypothesis formation, and testing by machine -Management of biological databases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信