一种改进的非线性信号多尺度特征提取方法。

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-05-01 DOI:10.1063/5.0266937
Ziling Lu, Jian Wang
{"title":"一种改进的非线性信号多尺度特征提取方法。","authors":"Ziling Lu, Jian Wang","doi":"10.1063/5.0266937","DOIUrl":null,"url":null,"abstract":"<p><p>This paper proposes an innovative multi-scale feature extraction method for analyzing electroencephalogram (EEG) and electrocardiogram (ECG) signals. The method utilizes an energy functional derived from the Cahn-Hilliard (CH) phase field equation to extract features, aiming to improve classification accuracy. To validate its effectiveness, we integrate the extracted features with a Support Vector Machine (SVM) classifier, forming the CH-SVM model for both EEG and ECG classification. The proposed method achieves an accuracy of 97.14% for EEG and 92.65% for ECG. Compared to conventional convolutional neural network (CNN) models, it demonstrates a significant reduction in computational cost. Furthermore, in comparison to the traditional multi-scale feature extraction method-Multifractal Detrended Fluctuation Analysis (MF-DFA)-the proposed method improves EEG classification accuracy by 5.84% and ECG classification accuracy by 5.15%. These results highlight the superior performance of the CH-SVM method in biomedical signal classification, offering both enhanced accuracy and computational efficiency.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 5","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improved multi-scale feature extraction method for nonlinear signals.\",\"authors\":\"Ziling Lu, Jian Wang\",\"doi\":\"10.1063/5.0266937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper proposes an innovative multi-scale feature extraction method for analyzing electroencephalogram (EEG) and electrocardiogram (ECG) signals. The method utilizes an energy functional derived from the Cahn-Hilliard (CH) phase field equation to extract features, aiming to improve classification accuracy. To validate its effectiveness, we integrate the extracted features with a Support Vector Machine (SVM) classifier, forming the CH-SVM model for both EEG and ECG classification. The proposed method achieves an accuracy of 97.14% for EEG and 92.65% for ECG. Compared to conventional convolutional neural network (CNN) models, it demonstrates a significant reduction in computational cost. Furthermore, in comparison to the traditional multi-scale feature extraction method-Multifractal Detrended Fluctuation Analysis (MF-DFA)-the proposed method improves EEG classification accuracy by 5.84% and ECG classification accuracy by 5.15%. These results highlight the superior performance of the CH-SVM method in biomedical signal classification, offering both enhanced accuracy and computational efficiency.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":\"35 5\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0266937\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0266937","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种创新的多尺度特征提取方法,用于分析脑电图和心电图信号。该方法利用Cahn-Hilliard (CH)相场方程导出的能量泛函提取特征,旨在提高分类精度。为了验证其有效性,我们将提取的特征与支持向量机(SVM)分类器相结合,形成CH-SVM模型用于EEG和ECG分类。该方法对EEG和ECG的准确率分别达到97.14%和92.65%。与传统的卷积神经网络(CNN)模型相比,它的计算成本显著降低。此外,与传统的多尺度特征提取方法——多重分形去趋势波动分析(MF-DFA)相比,该方法的脑电分类准确率提高了5.84%,心电分类准确率提高了5.15%。这些结果突出了CH-SVM方法在生物医学信号分类中的优越性能,提供了更高的精度和计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An improved multi-scale feature extraction method for nonlinear signals.

This paper proposes an innovative multi-scale feature extraction method for analyzing electroencephalogram (EEG) and electrocardiogram (ECG) signals. The method utilizes an energy functional derived from the Cahn-Hilliard (CH) phase field equation to extract features, aiming to improve classification accuracy. To validate its effectiveness, we integrate the extracted features with a Support Vector Machine (SVM) classifier, forming the CH-SVM model for both EEG and ECG classification. The proposed method achieves an accuracy of 97.14% for EEG and 92.65% for ECG. Compared to conventional convolutional neural network (CNN) models, it demonstrates a significant reduction in computational cost. Furthermore, in comparison to the traditional multi-scale feature extraction method-Multifractal Detrended Fluctuation Analysis (MF-DFA)-the proposed method improves EEG classification accuracy by 5.84% and ECG classification accuracy by 5.15%. These results highlight the superior performance of the CH-SVM method in biomedical signal classification, offering both enhanced accuracy and computational efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信