Han-Jung Kuo, Prahalad Srinivasan, Yu-Chieh Lin, Min Lu, Carissa Rungkittikhun, Qi Zhang, Wei-Shou Hu
{"title":"适应悬浮生长的重组腺相关病毒产生细胞系的转录组学功能表征。","authors":"Han-Jung Kuo, Prahalad Srinivasan, Yu-Chieh Lin, Min Lu, Carissa Rungkittikhun, Qi Zhang, Wei-Shou Hu","doi":"10.1002/btpr.70042","DOIUrl":null,"url":null,"abstract":"<p>Recombinant adeno-associated virus (rAAV) is a widely used delivery vehicle in gene therapy. A scalable production technology is essential for its wide clinical applications. We have taken a synthetic biology approach to generate HEK293-based cell lines which harbor integrated genetic elements encoding essential AAV and adenoviral helper components and can be induced to produce rAAV. Through cycles of cell line enhancement, a high rAAV productivity could be achieved. The cell lines, like their parental HEK293, grew adherently. For scalable production, cell cultivation in suspension is highly desirable. A producer cell line GX6B was adapted to suspension growth in serum-free medium (named GX6Bs). However, it had substantially reduced virus titer. Returning GX6Bs cells to adherent culture conditions using adherent medium and cultured stationarily brought the productivity back to close to the level of adherent GX6B. A survey of the transcriptome revealed that induction and rAAV production elicited a wide range of cellular changes in various functional classes, including host immune defense response and nucleosome organization. The response was more subdued in suspension-growing GX6Bs. Upon reverting to adherent growth, the cellular transcriptome change regained its vigor to be more similar to that seen in GX6B. The GX6Bs maintained in suspension serum-free conditions were then reverted to the adherent culture medium but under an agitated culture environment to keep suspension growth for rAAV production. The productivity returned to within 25%–50% of GX6B. This work demonstrated the feasibility of the suspension culture of synthetic cell lines for the expansion and production of rAAV.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":"41 5","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://aiche.onlinelibrary.wiley.com/doi/epdf/10.1002/btpr.70042","citationCount":"0","resultStr":"{\"title\":\"Transcriptomic functional characterization of recombinant adeno-associated virus producing cell line adapted to suspension-growth\",\"authors\":\"Han-Jung Kuo, Prahalad Srinivasan, Yu-Chieh Lin, Min Lu, Carissa Rungkittikhun, Qi Zhang, Wei-Shou Hu\",\"doi\":\"10.1002/btpr.70042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recombinant adeno-associated virus (rAAV) is a widely used delivery vehicle in gene therapy. A scalable production technology is essential for its wide clinical applications. We have taken a synthetic biology approach to generate HEK293-based cell lines which harbor integrated genetic elements encoding essential AAV and adenoviral helper components and can be induced to produce rAAV. Through cycles of cell line enhancement, a high rAAV productivity could be achieved. The cell lines, like their parental HEK293, grew adherently. For scalable production, cell cultivation in suspension is highly desirable. A producer cell line GX6B was adapted to suspension growth in serum-free medium (named GX6Bs). However, it had substantially reduced virus titer. Returning GX6Bs cells to adherent culture conditions using adherent medium and cultured stationarily brought the productivity back to close to the level of adherent GX6B. A survey of the transcriptome revealed that induction and rAAV production elicited a wide range of cellular changes in various functional classes, including host immune defense response and nucleosome organization. The response was more subdued in suspension-growing GX6Bs. Upon reverting to adherent growth, the cellular transcriptome change regained its vigor to be more similar to that seen in GX6B. The GX6Bs maintained in suspension serum-free conditions were then reverted to the adherent culture medium but under an agitated culture environment to keep suspension growth for rAAV production. The productivity returned to within 25%–50% of GX6B. This work demonstrated the feasibility of the suspension culture of synthetic cell lines for the expansion and production of rAAV.</p>\",\"PeriodicalId\":8856,\"journal\":{\"name\":\"Biotechnology Progress\",\"volume\":\"41 5\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://aiche.onlinelibrary.wiley.com/doi/epdf/10.1002/btpr.70042\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Progress\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://aiche.onlinelibrary.wiley.com/doi/10.1002/btpr.70042\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Progress","FirstCategoryId":"5","ListUrlMain":"https://aiche.onlinelibrary.wiley.com/doi/10.1002/btpr.70042","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Transcriptomic functional characterization of recombinant adeno-associated virus producing cell line adapted to suspension-growth
Recombinant adeno-associated virus (rAAV) is a widely used delivery vehicle in gene therapy. A scalable production technology is essential for its wide clinical applications. We have taken a synthetic biology approach to generate HEK293-based cell lines which harbor integrated genetic elements encoding essential AAV and adenoviral helper components and can be induced to produce rAAV. Through cycles of cell line enhancement, a high rAAV productivity could be achieved. The cell lines, like their parental HEK293, grew adherently. For scalable production, cell cultivation in suspension is highly desirable. A producer cell line GX6B was adapted to suspension growth in serum-free medium (named GX6Bs). However, it had substantially reduced virus titer. Returning GX6Bs cells to adherent culture conditions using adherent medium and cultured stationarily brought the productivity back to close to the level of adherent GX6B. A survey of the transcriptome revealed that induction and rAAV production elicited a wide range of cellular changes in various functional classes, including host immune defense response and nucleosome organization. The response was more subdued in suspension-growing GX6Bs. Upon reverting to adherent growth, the cellular transcriptome change regained its vigor to be more similar to that seen in GX6B. The GX6Bs maintained in suspension serum-free conditions were then reverted to the adherent culture medium but under an agitated culture environment to keep suspension growth for rAAV production. The productivity returned to within 25%–50% of GX6B. This work demonstrated the feasibility of the suspension culture of synthetic cell lines for the expansion and production of rAAV.
期刊介绍:
Biotechnology Progress , an official, bimonthly publication of the American Institute of Chemical Engineers and its technological community, the Society for Biological Engineering, features peer-reviewed research articles, reviews, and descriptions of emerging techniques for the development and design of new processes, products, and devices for the biotechnology, biopharmaceutical and bioprocess industries.
Widespread interest includes application of biological and engineering principles in fields such as applied cellular physiology and metabolic engineering, biocatalysis and bioreactor design, bioseparations and downstream processing, cell culture and tissue engineering, biosensors and process control, bioinformatics and systems biology, biomaterials and artificial organs, stem cell biology and genetics, and plant biology and food science. Manuscripts concerning the design of related processes, products, or devices are also encouraged. Four types of manuscripts are printed in the Journal: Research Papers, Topical or Review Papers, Letters to the Editor, and R & D Notes.