Weihua Ye, Zheng Liu, Yaoxi Liu, Han Xiao, Qian Tan, An Yan, Guanghui Zhu
{"title":"ELAVL1通过TRIM21/HOXD8轴促进铁凋亡,抑制先天性假关节胫骨源间充质干细胞的成骨分化","authors":"Weihua Ye, Zheng Liu, Yaoxi Liu, Han Xiao, Qian Tan, An Yan, Guanghui Zhu","doi":"10.1002/ccs3.70016","DOIUrl":null,"url":null,"abstract":"<p>Osteogenic differentiation of mesenchymal stem cells (MSCs) was strongly correlated with the progression of congenital tibial pseudoarthrosis (CPT). Activation of ferroptosis inhibited osteogenic differentiation of MSCs. ELAV-like RNA binding protein 1 (ELAVL1) is a key factor in promoting ferroptosis. This study aimed to elucidate the mechanism of ELAVL1 in the osteogenic differentiation of CPT periosteum-derived MSCs. Osteogenic differentiation of CPT periosteum-derived MSCs was detected by ARS and ALP staining. Fe<sup>2+</sup> content and lipid reactive oxygen species content were measured using commercial kits. Molecular interactions were verified using RIP, RNA pulldown, and Co-IP. The ubiquitination level of homeobox gene D8 (HOXD8) was detected using Co-IP. Expression of ELAVL1 and tripartite motif containing 21 (TRIM21) was upregulated in CPT periosteum-derived MSCs, whereas HOXD8 expression was downregulated. Moreover, knockdown of ELAVL1 or TRIM21 inhibited ferroptosis and promoted osteogenic differentiation of CPT MSCs. TRIM21 overexpression reversed the effect caused by knockdown of ELAVL1. Mechanistically, ELAVL1 upregulated TRIM21 by increasing the stability of TRIM21, which ubiquitinated and degraded HOXD8. ELAVL1 bound to TRIM21, which promoted ubiquitination and degradation of HOXD8, thereby promoting ferroptosis to inhibit osteogenic differentiation of CPT MSCs.</p>","PeriodicalId":15226,"journal":{"name":"Journal of Cell Communication and Signaling","volume":"19 2","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ccs3.70016","citationCount":"0","resultStr":"{\"title\":\"ELAVL1 promotes ferroptosis via the TRIM21/HOXD8 axis to inhibit osteogenic differentiation in congenital pseudoarticular tibia-derived mesenchymal stem cells\",\"authors\":\"Weihua Ye, Zheng Liu, Yaoxi Liu, Han Xiao, Qian Tan, An Yan, Guanghui Zhu\",\"doi\":\"10.1002/ccs3.70016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Osteogenic differentiation of mesenchymal stem cells (MSCs) was strongly correlated with the progression of congenital tibial pseudoarthrosis (CPT). Activation of ferroptosis inhibited osteogenic differentiation of MSCs. ELAV-like RNA binding protein 1 (ELAVL1) is a key factor in promoting ferroptosis. This study aimed to elucidate the mechanism of ELAVL1 in the osteogenic differentiation of CPT periosteum-derived MSCs. Osteogenic differentiation of CPT periosteum-derived MSCs was detected by ARS and ALP staining. Fe<sup>2+</sup> content and lipid reactive oxygen species content were measured using commercial kits. Molecular interactions were verified using RIP, RNA pulldown, and Co-IP. The ubiquitination level of homeobox gene D8 (HOXD8) was detected using Co-IP. Expression of ELAVL1 and tripartite motif containing 21 (TRIM21) was upregulated in CPT periosteum-derived MSCs, whereas HOXD8 expression was downregulated. Moreover, knockdown of ELAVL1 or TRIM21 inhibited ferroptosis and promoted osteogenic differentiation of CPT MSCs. TRIM21 overexpression reversed the effect caused by knockdown of ELAVL1. Mechanistically, ELAVL1 upregulated TRIM21 by increasing the stability of TRIM21, which ubiquitinated and degraded HOXD8. ELAVL1 bound to TRIM21, which promoted ubiquitination and degradation of HOXD8, thereby promoting ferroptosis to inhibit osteogenic differentiation of CPT MSCs.</p>\",\"PeriodicalId\":15226,\"journal\":{\"name\":\"Journal of Cell Communication and Signaling\",\"volume\":\"19 2\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ccs3.70016\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cell Communication and Signaling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ccs3.70016\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ccs3.70016","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
ELAVL1 promotes ferroptosis via the TRIM21/HOXD8 axis to inhibit osteogenic differentiation in congenital pseudoarticular tibia-derived mesenchymal stem cells
Osteogenic differentiation of mesenchymal stem cells (MSCs) was strongly correlated with the progression of congenital tibial pseudoarthrosis (CPT). Activation of ferroptosis inhibited osteogenic differentiation of MSCs. ELAV-like RNA binding protein 1 (ELAVL1) is a key factor in promoting ferroptosis. This study aimed to elucidate the mechanism of ELAVL1 in the osteogenic differentiation of CPT periosteum-derived MSCs. Osteogenic differentiation of CPT periosteum-derived MSCs was detected by ARS and ALP staining. Fe2+ content and lipid reactive oxygen species content were measured using commercial kits. Molecular interactions were verified using RIP, RNA pulldown, and Co-IP. The ubiquitination level of homeobox gene D8 (HOXD8) was detected using Co-IP. Expression of ELAVL1 and tripartite motif containing 21 (TRIM21) was upregulated in CPT periosteum-derived MSCs, whereas HOXD8 expression was downregulated. Moreover, knockdown of ELAVL1 or TRIM21 inhibited ferroptosis and promoted osteogenic differentiation of CPT MSCs. TRIM21 overexpression reversed the effect caused by knockdown of ELAVL1. Mechanistically, ELAVL1 upregulated TRIM21 by increasing the stability of TRIM21, which ubiquitinated and degraded HOXD8. ELAVL1 bound to TRIM21, which promoted ubiquitination and degradation of HOXD8, thereby promoting ferroptosis to inhibit osteogenic differentiation of CPT MSCs.
期刊介绍:
The Journal of Cell Communication and Signaling provides a forum for fundamental and translational research. In particular, it publishes papers discussing intercellular and intracellular signaling pathways that are particularly important to understand how cells interact with each other and with the surrounding environment, and how cellular behavior contributes to pathological states. JCCS encourages the submission of research manuscripts, timely reviews and short commentaries discussing recent publications, key developments and controversies.
Research manuscripts can be published under two different sections :
In the Pathology and Translational Research Section (Section Editor Andrew Leask) , manuscripts report original research dealing with celllular aspects of normal and pathological signaling and communication, with a particular interest in translational research.
In the Molecular Signaling Section (Section Editor Satoshi Kubota) manuscripts report original signaling research performed at molecular levels with a particular interest in the functions of intracellular and membrane components involved in cell signaling.