三维镜像对称顶点函数的p进逼近

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Andrey Smirnov, Alexander Varchenko
{"title":"三维镜像对称顶点函数的p进逼近","authors":"Andrey Smirnov,&nbsp;Alexander Varchenko","doi":"10.1007/s11005-025-01944-x","DOIUrl":null,"url":null,"abstract":"<div><p>Using the 3<i>D</i> mirror symmetry we construct a system of polynomials <span>\\(\\textsf{T}_s(z)\\)</span> with integral coefficients which solve the quantum differential equitation of <span>\\(X=T^{*}\\operatorname {Gr}(k,n)\\)</span> modulo <span>\\(p^s\\)</span>, where <i>p</i> is a prime number. We show that the sequence <span>\\(\\textsf{T}_s(z)\\)</span> converges in the <i>p</i>-adic norm to the Okounkov’s vertex function of <i>X</i> as <span>\\(s\\rightarrow \\infty \\)</span>. We prove that <span>\\(\\textsf{T}_s(z)\\)</span> satisfy Dwork-type congruences which lead to a new infinite product presentation of the vertex function modulo <span>\\(p^s\\)</span>.\n</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"115 3","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The p-adic approximations of vertex functions via 3D mirror symmetry\",\"authors\":\"Andrey Smirnov,&nbsp;Alexander Varchenko\",\"doi\":\"10.1007/s11005-025-01944-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Using the 3<i>D</i> mirror symmetry we construct a system of polynomials <span>\\\\(\\\\textsf{T}_s(z)\\\\)</span> with integral coefficients which solve the quantum differential equitation of <span>\\\\(X=T^{*}\\\\operatorname {Gr}(k,n)\\\\)</span> modulo <span>\\\\(p^s\\\\)</span>, where <i>p</i> is a prime number. We show that the sequence <span>\\\\(\\\\textsf{T}_s(z)\\\\)</span> converges in the <i>p</i>-adic norm to the Okounkov’s vertex function of <i>X</i> as <span>\\\\(s\\\\rightarrow \\\\infty \\\\)</span>. We prove that <span>\\\\(\\\\textsf{T}_s(z)\\\\)</span> satisfy Dwork-type congruences which lead to a new infinite product presentation of the vertex function modulo <span>\\\\(p^s\\\\)</span>.\\n</p></div>\",\"PeriodicalId\":685,\"journal\":{\"name\":\"Letters in Mathematical Physics\",\"volume\":\"115 3\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11005-025-01944-x\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-025-01944-x","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

利用三维镜像对称构造了一个具有积分系数的多项式系统\(\textsf{T}_s(z)\),求解了\(X=T^{*}\operatorname {Gr}(k,n)\)模\(p^s\)的量子微分方程,其中p为素数。我们证明了序列\(\textsf{T}_s(z)\)在p进范数收敛到X的Okounkov顶点函数\(s\rightarrow \infty \)。我们证明了\(\textsf{T}_s(z)\)满足dwork型同余,从而得到顶点函数模\(p^s\)的一个新的无穷积表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The p-adic approximations of vertex functions via 3D mirror symmetry

Using the 3D mirror symmetry we construct a system of polynomials \(\textsf{T}_s(z)\) with integral coefficients which solve the quantum differential equitation of \(X=T^{*}\operatorname {Gr}(k,n)\) modulo \(p^s\), where p is a prime number. We show that the sequence \(\textsf{T}_s(z)\) converges in the p-adic norm to the Okounkov’s vertex function of X as \(s\rightarrow \infty \). We prove that \(\textsf{T}_s(z)\) satisfy Dwork-type congruences which lead to a new infinite product presentation of the vertex function modulo \(p^s\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Letters in Mathematical Physics
Letters in Mathematical Physics 物理-物理:数学物理
CiteScore
2.40
自引率
8.30%
发文量
111
审稿时长
3 months
期刊介绍: The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信