膨胀粗糙斑对地震矩的影响

IF 1.8 3区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY
P. A. Selvadurai, A. P. S. Selvadurai
{"title":"膨胀粗糙斑对地震矩的影响","authors":"P. A. Selvadurai,&nbsp;A. P. S. Selvadurai","doi":"10.1007/s10659-025-10135-7","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a novel procedure to examine the influences of friction, dilatancy, and normal stresses at fault zones on the estimation of seismic moment. For illustrative purposes, the study focuses on a circular frictional dilatant patch located within a frictionless pre-compressed fault zone undergoing relative shear. When dilatancy occurs, the interface beyond the dilatant region may experience separation due to the normal stresses acting on the fault plane, affecting the deformational response of the pre-stressed asperity. This approach allows for an evaluation of the normal stress on the dilatant region, leading to a re-interpretation of the conventional definition of seismic moment. We compare our model against a comprehensive catalog of earthquakes spanning 16 orders of magnitude, utilizing seismologically inferred source properties as well as data from two separate experimental studies that directly measure the shear-dilatant response of shear fractures in both laboratory and field settings. Our findings indicate that friction-induced dilatancy exerts minimal influence on the estimation of seismic moment. However, we emphasize that the discrepancies between our direct measurements and inferred estimates of seismic moment highlight the need for focused campaigns and in situ and on-fault assessments of earthquake mechanics. <b>Plain Language summary</b>. The conventional definition of the <i>Seismic Moment</i> has been central to unifying information from plate tectonics, geology, geodesy, and seismology. It looks at how the ground moves along a fault plane and the strength of the surrounding rocks. However, it often overlooks other factors that might affect this movement, such as the stress on the fault and the local topography that can induce additional physical responses. This study explores how these additional factors, particularly a process called dilatancy, can change our understanding of the seismic moment. The authors found that while these factors do play a role, they have a minimal impact on the traditional definition of seismic moment initially proposed by Aki in 1966.</p></div>","PeriodicalId":624,"journal":{"name":"Journal of Elasticity","volume":"157 3","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10659-025-10135-7.pdf","citationCount":"0","resultStr":"{\"title\":\"On the Influence of a Dilatant Asperity Patch on the Seismic Moment\",\"authors\":\"P. A. Selvadurai,&nbsp;A. P. S. Selvadurai\",\"doi\":\"10.1007/s10659-025-10135-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper proposes a novel procedure to examine the influences of friction, dilatancy, and normal stresses at fault zones on the estimation of seismic moment. For illustrative purposes, the study focuses on a circular frictional dilatant patch located within a frictionless pre-compressed fault zone undergoing relative shear. When dilatancy occurs, the interface beyond the dilatant region may experience separation due to the normal stresses acting on the fault plane, affecting the deformational response of the pre-stressed asperity. This approach allows for an evaluation of the normal stress on the dilatant region, leading to a re-interpretation of the conventional definition of seismic moment. We compare our model against a comprehensive catalog of earthquakes spanning 16 orders of magnitude, utilizing seismologically inferred source properties as well as data from two separate experimental studies that directly measure the shear-dilatant response of shear fractures in both laboratory and field settings. Our findings indicate that friction-induced dilatancy exerts minimal influence on the estimation of seismic moment. However, we emphasize that the discrepancies between our direct measurements and inferred estimates of seismic moment highlight the need for focused campaigns and in situ and on-fault assessments of earthquake mechanics. <b>Plain Language summary</b>. The conventional definition of the <i>Seismic Moment</i> has been central to unifying information from plate tectonics, geology, geodesy, and seismology. It looks at how the ground moves along a fault plane and the strength of the surrounding rocks. However, it often overlooks other factors that might affect this movement, such as the stress on the fault and the local topography that can induce additional physical responses. This study explores how these additional factors, particularly a process called dilatancy, can change our understanding of the seismic moment. The authors found that while these factors do play a role, they have a minimal impact on the traditional definition of seismic moment initially proposed by Aki in 1966.</p></div>\",\"PeriodicalId\":624,\"journal\":{\"name\":\"Journal of Elasticity\",\"volume\":\"157 3\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10659-025-10135-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Elasticity\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10659-025-10135-7\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Elasticity","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10659-025-10135-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的方法来研究断层带的摩擦、剪胀和正应力对地震矩估计的影响。为了便于说明,该研究的重点是位于无摩擦预压缩断裂带内的圆形摩擦膨胀块,该断裂带正在经历相对剪切。当剪胀发生时,剪胀区以外的界面会因作用于断面上的正应力而发生分离,从而影响预应力粗糙体的变形响应。这种方法可以评估膨胀区的正应力,从而重新解释地震矩的传统定义。我们利用地震学推断的震源属性以及来自两个独立实验研究的数据,将我们的模型与跨越16个数量级的地震综合目录进行比较,这两个实验研究直接测量了实验室和现场环境中剪切裂缝的剪切-膨胀响应。我们的研究结果表明,摩擦引起的剪胀对地震矩的估计影响很小。然而,我们强调,我们对地震矩的直接测量和推断估计之间的差异突出了对地震力学的集中运动和原位和断层评估的需求。简单的语言总结。地震矩的传统定义对于统一板块构造学、地质学、大地测量学和地震学的信息至关重要。它观察地面是如何沿着断裂面移动的,以及周围岩石的强度。然而,它往往忽略了可能影响这种运动的其他因素,例如断层上的应力和可能引起额外物理反应的局部地形。这项研究探讨了这些额外的因素,特别是一个叫做膨胀的过程,是如何改变我们对地震矩的理解的。作者发现,虽然这些因素确实发挥了作用,但它们对Aki于1966年最初提出的地震矩的传统定义的影响很小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Influence of a Dilatant Asperity Patch on the Seismic Moment

This paper proposes a novel procedure to examine the influences of friction, dilatancy, and normal stresses at fault zones on the estimation of seismic moment. For illustrative purposes, the study focuses on a circular frictional dilatant patch located within a frictionless pre-compressed fault zone undergoing relative shear. When dilatancy occurs, the interface beyond the dilatant region may experience separation due to the normal stresses acting on the fault plane, affecting the deformational response of the pre-stressed asperity. This approach allows for an evaluation of the normal stress on the dilatant region, leading to a re-interpretation of the conventional definition of seismic moment. We compare our model against a comprehensive catalog of earthquakes spanning 16 orders of magnitude, utilizing seismologically inferred source properties as well as data from two separate experimental studies that directly measure the shear-dilatant response of shear fractures in both laboratory and field settings. Our findings indicate that friction-induced dilatancy exerts minimal influence on the estimation of seismic moment. However, we emphasize that the discrepancies between our direct measurements and inferred estimates of seismic moment highlight the need for focused campaigns and in situ and on-fault assessments of earthquake mechanics. Plain Language summary. The conventional definition of the Seismic Moment has been central to unifying information from plate tectonics, geology, geodesy, and seismology. It looks at how the ground moves along a fault plane and the strength of the surrounding rocks. However, it often overlooks other factors that might affect this movement, such as the stress on the fault and the local topography that can induce additional physical responses. This study explores how these additional factors, particularly a process called dilatancy, can change our understanding of the seismic moment. The authors found that while these factors do play a role, they have a minimal impact on the traditional definition of seismic moment initially proposed by Aki in 1966.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Elasticity
Journal of Elasticity 工程技术-材料科学:综合
CiteScore
3.70
自引率
15.00%
发文量
74
审稿时长
>12 weeks
期刊介绍: The Journal of Elasticity was founded in 1971 by Marvin Stippes (1922-1979), with its main purpose being to report original and significant discoveries in elasticity. The Journal has broadened in scope over the years to include original contributions in the physical and mathematical science of solids. The areas of rational mechanics, mechanics of materials, including theories of soft materials, biomechanics, and engineering sciences that contribute to fundamental advancements in understanding and predicting the complex behavior of solids are particularly welcomed. The role of elasticity in all such behavior is well recognized and reporting significant discoveries in elasticity remains important to the Journal, as is its relation to thermal and mass transport, electromagnetism, and chemical reactions. Fundamental research that applies the concepts of physics and elements of applied mathematical science is of particular interest. Original research contributions will appear as either full research papers or research notes. Well-documented historical essays and reviews also are welcomed. Materials that will prove effective in teaching will appear as classroom notes. Computational and/or experimental investigations that emphasize relationships to the modeling of the novel physical behavior of solids at all scales are of interest. Guidance principles for content are to be found in the current interests of the Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信