具有正Yamabe不变量的爱因斯坦流形的刚性

IF 0.6 3区 数学 Q3 MATHEMATICS
L. Branca, G. Catino, D. Dameno, P. Mastrolia
{"title":"具有正Yamabe不变量的爱因斯坦流形的刚性","authors":"L. Branca,&nbsp;G. Catino,&nbsp;D. Dameno,&nbsp;P. Mastrolia","doi":"10.1007/s10455-025-09996-x","DOIUrl":null,"url":null,"abstract":"<div><p>We provide optimal pinching results on closed Einstein manifolds with positive Yamabe invariant in any dimension, extending the optimal bound for the scalar curvature due to Gursky and LeBrun in dimension four. We also improve the known bounds of the Yamabe invariant <i>via</i> the <span>\\(L^{\\frac{n}{2}}\\)</span>-norm of the Weyl tensor for low-dimensional Einstein manifolds. Finally, we discuss some advances on an algebraic inequality involving the Weyl tensor for dimensions 5 and 6.</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":"67 4","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10455-025-09996-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Rigidity of Einstein manifolds with positive Yamabe invariant\",\"authors\":\"L. Branca,&nbsp;G. Catino,&nbsp;D. Dameno,&nbsp;P. Mastrolia\",\"doi\":\"10.1007/s10455-025-09996-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We provide optimal pinching results on closed Einstein manifolds with positive Yamabe invariant in any dimension, extending the optimal bound for the scalar curvature due to Gursky and LeBrun in dimension four. We also improve the known bounds of the Yamabe invariant <i>via</i> the <span>\\\\(L^{\\\\frac{n}{2}}\\\\)</span>-norm of the Weyl tensor for low-dimensional Einstein manifolds. Finally, we discuss some advances on an algebraic inequality involving the Weyl tensor for dimensions 5 and 6.</p></div>\",\"PeriodicalId\":8268,\"journal\":{\"name\":\"Annals of Global Analysis and Geometry\",\"volume\":\"67 4\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10455-025-09996-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Global Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10455-025-09996-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-025-09996-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们给出了任意维上具有正Yamabe不变量的闭爱因斯坦流形的最优捏合结果,扩展了四维上由于Gursky和LeBrun引起的标量曲率的最优界。我们还通过低维爱因斯坦流形的Weyl张量的\(L^{\frac{n}{2}}\) -范数改进了Yamabe不变量的已知界。最后,我们讨论了涉及维5和维6的Weyl张量的代数不等式的一些进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rigidity of Einstein manifolds with positive Yamabe invariant

We provide optimal pinching results on closed Einstein manifolds with positive Yamabe invariant in any dimension, extending the optimal bound for the scalar curvature due to Gursky and LeBrun in dimension four. We also improve the known bounds of the Yamabe invariant via the \(L^{\frac{n}{2}}\)-norm of the Weyl tensor for low-dimensional Einstein manifolds. Finally, we discuss some advances on an algebraic inequality involving the Weyl tensor for dimensions 5 and 6.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
70
审稿时长
6-12 weeks
期刊介绍: This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field. The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信