{"title":"具有正Yamabe不变量的爱因斯坦流形的刚性","authors":"L. Branca, G. Catino, D. Dameno, P. Mastrolia","doi":"10.1007/s10455-025-09996-x","DOIUrl":null,"url":null,"abstract":"<div><p>We provide optimal pinching results on closed Einstein manifolds with positive Yamabe invariant in any dimension, extending the optimal bound for the scalar curvature due to Gursky and LeBrun in dimension four. We also improve the known bounds of the Yamabe invariant <i>via</i> the <span>\\(L^{\\frac{n}{2}}\\)</span>-norm of the Weyl tensor for low-dimensional Einstein manifolds. Finally, we discuss some advances on an algebraic inequality involving the Weyl tensor for dimensions 5 and 6.</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":"67 4","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10455-025-09996-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Rigidity of Einstein manifolds with positive Yamabe invariant\",\"authors\":\"L. Branca, G. Catino, D. Dameno, P. Mastrolia\",\"doi\":\"10.1007/s10455-025-09996-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We provide optimal pinching results on closed Einstein manifolds with positive Yamabe invariant in any dimension, extending the optimal bound for the scalar curvature due to Gursky and LeBrun in dimension four. We also improve the known bounds of the Yamabe invariant <i>via</i> the <span>\\\\(L^{\\\\frac{n}{2}}\\\\)</span>-norm of the Weyl tensor for low-dimensional Einstein manifolds. Finally, we discuss some advances on an algebraic inequality involving the Weyl tensor for dimensions 5 and 6.</p></div>\",\"PeriodicalId\":8268,\"journal\":{\"name\":\"Annals of Global Analysis and Geometry\",\"volume\":\"67 4\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10455-025-09996-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Global Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10455-025-09996-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-025-09996-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Rigidity of Einstein manifolds with positive Yamabe invariant
We provide optimal pinching results on closed Einstein manifolds with positive Yamabe invariant in any dimension, extending the optimal bound for the scalar curvature due to Gursky and LeBrun in dimension four. We also improve the known bounds of the Yamabe invariant via the \(L^{\frac{n}{2}}\)-norm of the Weyl tensor for low-dimensional Einstein manifolds. Finally, we discuss some advances on an algebraic inequality involving the Weyl tensor for dimensions 5 and 6.
期刊介绍:
This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field.
The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.