基于Fe-MOF@BiVO4的高效有机污染去除光催化过氧单硫酸盐活化体系:空间分离的活性位点

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Yaping Zhang , Yanan Zhao , Yixin Qi , Yanyan Lin , Yuhang Cheng , Mengmeng Sun , Lei Wang
{"title":"基于Fe-MOF@BiVO4的高效有机污染去除光催化过氧单硫酸盐活化体系:空间分离的活性位点","authors":"Yaping Zhang ,&nbsp;Yanan Zhao ,&nbsp;Yixin Qi ,&nbsp;Yanyan Lin ,&nbsp;Yuhang Cheng ,&nbsp;Mengmeng Sun ,&nbsp;Lei Wang","doi":"10.1016/j.jcis.2025.137917","DOIUrl":null,"url":null,"abstract":"<div><div>Photogenerated holes have emerged as critical mediators for activating peroxymonosulfate (PMS) in the coupled photocatalytic PMS activation system, enabling novel dual-channel activation pathway. A tandem system based on Fe-MOF@BiVO<sub>4</sub> (Vis/PMS/Fe-MOF@BVO) with spatially separated active sites was constructed to form a dual-channel activation mechanism. The BiVO<sub>4</sub> (010) face provides the active sites for photogenerated electrons to drive the Fe<sup>3+</sup>/Fe<sup>2+</sup> cycle and activate PMS, while the BiVO<sub>4</sub> (110) face serves as the active sites for photogenerated holes to activate PMS. Consequently, the Vis/PMS/Fe-MOF@BVO system achieved complete degradation of 10 mg/L BPA within 6 min, with a degradation rate constant (K<sub>obs</sub>) of 0.74 min<sup>−1</sup>. It also demonstrated high removal efficiency for various organic pollutants with excellent immunity to interference and reusability. This work provides a new insight into the coordinative mechanism for coupled photocatalysis and PMS activation system.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"697 ","pages":"Article 137917"},"PeriodicalIF":9.4000,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photocatalytic peroxymonosulfate activation system based on Fe-MOF@BiVO4 for efficient organic pollutions removal: Spatially separated active sites\",\"authors\":\"Yaping Zhang ,&nbsp;Yanan Zhao ,&nbsp;Yixin Qi ,&nbsp;Yanyan Lin ,&nbsp;Yuhang Cheng ,&nbsp;Mengmeng Sun ,&nbsp;Lei Wang\",\"doi\":\"10.1016/j.jcis.2025.137917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Photogenerated holes have emerged as critical mediators for activating peroxymonosulfate (PMS) in the coupled photocatalytic PMS activation system, enabling novel dual-channel activation pathway. A tandem system based on Fe-MOF@BiVO<sub>4</sub> (Vis/PMS/Fe-MOF@BVO) with spatially separated active sites was constructed to form a dual-channel activation mechanism. The BiVO<sub>4</sub> (010) face provides the active sites for photogenerated electrons to drive the Fe<sup>3+</sup>/Fe<sup>2+</sup> cycle and activate PMS, while the BiVO<sub>4</sub> (110) face serves as the active sites for photogenerated holes to activate PMS. Consequently, the Vis/PMS/Fe-MOF@BVO system achieved complete degradation of 10 mg/L BPA within 6 min, with a degradation rate constant (K<sub>obs</sub>) of 0.74 min<sup>−1</sup>. It also demonstrated high removal efficiency for various organic pollutants with excellent immunity to interference and reusability. This work provides a new insight into the coordinative mechanism for coupled photocatalysis and PMS activation system.</div></div>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":\"697 \",\"pages\":\"Article 137917\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021979725013086\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725013086","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在耦合光催化PMS活化体系中,光生孔作为活化过氧单硫酸盐(PMS)的关键介质,实现了新的双通道活化途径。构建了以Fe-MOF@BiVO4 (Vis/PMS/Fe-MOF@BVO)为载体,活性位点空间分离的串联体系,形成双通道活化机制。BiVO4(010)面为光生电子提供驱动Fe3+/Fe2+循环并激活PMS的活性位点,而BiVO4(110)面为光生空穴提供激活PMS的活性位点。因此,Vis/PMS/Fe-MOF@BVO系统在6分钟内完全降解了10 mg/L的BPA,降解速率常数(Kobs)为0.74 min−1。对多种有机污染物的去除率高,具有良好的抗干扰性和可重复使用性。这项工作为光催化与PMS耦合活化体系的协调机制提供了新的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Photocatalytic peroxymonosulfate activation system based on Fe-MOF@BiVO4 for efficient organic pollutions removal: Spatially separated active sites
Photogenerated holes have emerged as critical mediators for activating peroxymonosulfate (PMS) in the coupled photocatalytic PMS activation system, enabling novel dual-channel activation pathway. A tandem system based on Fe-MOF@BiVO4 (Vis/PMS/Fe-MOF@BVO) with spatially separated active sites was constructed to form a dual-channel activation mechanism. The BiVO4 (010) face provides the active sites for photogenerated electrons to drive the Fe3+/Fe2+ cycle and activate PMS, while the BiVO4 (110) face serves as the active sites for photogenerated holes to activate PMS. Consequently, the Vis/PMS/Fe-MOF@BVO system achieved complete degradation of 10 mg/L BPA within 6 min, with a degradation rate constant (Kobs) of 0.74 min−1. It also demonstrated high removal efficiency for various organic pollutants with excellent immunity to interference and reusability. This work provides a new insight into the coordinative mechanism for coupled photocatalysis and PMS activation system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信