MNC:用于复杂网络配置的多代理框架

Cui Wang , Huan Li
{"title":"MNC:用于复杂网络配置的多代理框架","authors":"Cui Wang ,&nbsp;Huan Li","doi":"10.1016/j.iswa.2025.200531","DOIUrl":null,"url":null,"abstract":"<div><div>Recent progress in large language models (LLMs) has led to substantial improvements in their ability to perform a wide range of natural language processing tasks, particularly in handling complex scenarios. These models exhibit strong generalization capabilities and reasoning skills, making them well-suited for tasks that require integrating external knowledge and logical reasoning. In this paper, we introduce <strong>M</strong>ulti-agent based <strong>N</strong>etwork <strong>C</strong>onfiguration (MNC), a novel multi-agent framework designed to leverage LLMs for complex network configuration tasks. Our framework consists of three core components: (1) the <strong>Requirement Analysis Module</strong>, which interprets user queries and retrieves relevant external network configuration knowledge; (2) the <strong>Configuration Generation Module</strong>, which uses an iterative Chain-of-Thought (COT) approach to produce and refine multiple analysis pathways; and (3) the <strong>Configuration Refinement Module</strong>, which evaluates and improves the final network configuration through a reflection-driven mechanism. We evaluate MNC on a network configuration dataset, where our proposed MNC outperforms existing baseline methods. Furthermore, an ablation study demonstrates the individual contributions of each module to the framework’s overall effectiveness. This research underscores the potential of LLM-based systems to advance complex network configuration tasks.</div></div>","PeriodicalId":100684,"journal":{"name":"Intelligent Systems with Applications","volume":"26 ","pages":"Article 200531"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MNC: A multi-agent framework for complex network configuration\",\"authors\":\"Cui Wang ,&nbsp;Huan Li\",\"doi\":\"10.1016/j.iswa.2025.200531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recent progress in large language models (LLMs) has led to substantial improvements in their ability to perform a wide range of natural language processing tasks, particularly in handling complex scenarios. These models exhibit strong generalization capabilities and reasoning skills, making them well-suited for tasks that require integrating external knowledge and logical reasoning. In this paper, we introduce <strong>M</strong>ulti-agent based <strong>N</strong>etwork <strong>C</strong>onfiguration (MNC), a novel multi-agent framework designed to leverage LLMs for complex network configuration tasks. Our framework consists of three core components: (1) the <strong>Requirement Analysis Module</strong>, which interprets user queries and retrieves relevant external network configuration knowledge; (2) the <strong>Configuration Generation Module</strong>, which uses an iterative Chain-of-Thought (COT) approach to produce and refine multiple analysis pathways; and (3) the <strong>Configuration Refinement Module</strong>, which evaluates and improves the final network configuration through a reflection-driven mechanism. We evaluate MNC on a network configuration dataset, where our proposed MNC outperforms existing baseline methods. Furthermore, an ablation study demonstrates the individual contributions of each module to the framework’s overall effectiveness. This research underscores the potential of LLM-based systems to advance complex network configuration tasks.</div></div>\",\"PeriodicalId\":100684,\"journal\":{\"name\":\"Intelligent Systems with Applications\",\"volume\":\"26 \",\"pages\":\"Article 200531\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligent Systems with Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667305325000572\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems with Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667305325000572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大型语言模型(llm)的最新进展使其执行广泛的自然语言处理任务的能力得到了实质性的提高,特别是在处理复杂场景方面。这些模型表现出强大的泛化能力和推理能力,使它们非常适合需要集成外部知识和逻辑推理的任务。在本文中,我们介绍了基于多代理的网络配置(MNC),这是一种新的多代理框架,旨在利用llm来完成复杂的网络配置任务。我们的框架由三个核心组件组成:(1)需求分析模块,用于解释用户查询并检索相关的外部网络配置知识;(2)配置生成模块,它使用迭代的思维链(COT)方法来生成和细化多个分析路径;(3)配置优化模块,通过反射驱动机制对最终的网络配置进行评估和改进。我们在网络配置数据集上评估了MNC,其中我们提出的MNC优于现有的基线方法。此外,消融研究证明了每个模块对框架整体有效性的个人贡献。这项研究强调了基于llm的系统在推进复杂网络配置任务方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MNC: A multi-agent framework for complex network configuration
Recent progress in large language models (LLMs) has led to substantial improvements in their ability to perform a wide range of natural language processing tasks, particularly in handling complex scenarios. These models exhibit strong generalization capabilities and reasoning skills, making them well-suited for tasks that require integrating external knowledge and logical reasoning. In this paper, we introduce Multi-agent based Network Configuration (MNC), a novel multi-agent framework designed to leverage LLMs for complex network configuration tasks. Our framework consists of three core components: (1) the Requirement Analysis Module, which interprets user queries and retrieves relevant external network configuration knowledge; (2) the Configuration Generation Module, which uses an iterative Chain-of-Thought (COT) approach to produce and refine multiple analysis pathways; and (3) the Configuration Refinement Module, which evaluates and improves the final network configuration through a reflection-driven mechanism. We evaluate MNC on a network configuration dataset, where our proposed MNC outperforms existing baseline methods. Furthermore, an ablation study demonstrates the individual contributions of each module to the framework’s overall effectiveness. This research underscores the potential of LLM-based systems to advance complex network configuration tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信