Han She , Tian-Ran Li , Guozhi Zhao , Liang Yi , Qing Liu , Zheng-Chao Liu , Hao-Yu Pei , Xunjia Li , Deyu Zuo , Qingxiang Mao , Yong Li
{"title":"具有替莫唑胺耐药和免疫抑制微环境的胶质母细胞瘤的异常PLAC8表达","authors":"Han She , Tian-Ran Li , Guozhi Zhao , Liang Yi , Qing Liu , Zheng-Chao Liu , Hao-Yu Pei , Xunjia Li , Deyu Zuo , Qingxiang Mao , Yong Li","doi":"10.1016/j.canlet.2025.217805","DOIUrl":null,"url":null,"abstract":"<div><div>Glioblastoma (GBM), Isocitrate Dehydrogenase-wildtype (IDH-WT) represents the most prevalent and clinically aggressive subtype of adult diffuse gliomas, typically associated with poor prognosis. Temozolomide (TMZ) remains the first-line chemotherapeutic agent for GBM; however, the emergence of TMZ resistance represents a major therapeutic obstacle in clinical practice. This study identifies placenta-specific 8 (PLAC8) as a novel mediator of TMZ resistance in IDH-WT GBM. Elevated PLAC8 expression was strongly correlated with poorer survival rates, higher tumor grades in glioma, establishing it as an independent prognostic factor. Notably, consistent upregulation of PLAC8 was observed in both TMZ-resistant GBM cells and TMZ-treated patients, suggesting its potential as a biomarker for TMZ resistance. Mechanistic studies revealed that PLAC8 regulates TMZ sensitivity in GBM cells through the AKT-mTOR signaling pathway. Additionally, integrated bioinformatics and clinical analyses demonstrated that PLAC8 expression positively correlates with immune cell infiltration while promoting an immunosuppressive tumor microenvironment and modulating immunotherapy-related biomarkers, suggesting its potential as a predictive biomarker for immunotherapy response. In conclusion, PLAC8 represents a promising biomarker and therapeutic target for overcoming TMZ resistance and guiding immunotherapy in GBM. This study provides valuable insights for the development of personalized treatment strategies aimed at improving patient outcomes.</div></div>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":"625 ","pages":"Article 217805"},"PeriodicalIF":9.1000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aberrant PLAC8 expression characterizes glioblastoma with temozolomide resistance and an immunosuppressive microenvironment\",\"authors\":\"Han She , Tian-Ran Li , Guozhi Zhao , Liang Yi , Qing Liu , Zheng-Chao Liu , Hao-Yu Pei , Xunjia Li , Deyu Zuo , Qingxiang Mao , Yong Li\",\"doi\":\"10.1016/j.canlet.2025.217805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Glioblastoma (GBM), Isocitrate Dehydrogenase-wildtype (IDH-WT) represents the most prevalent and clinically aggressive subtype of adult diffuse gliomas, typically associated with poor prognosis. Temozolomide (TMZ) remains the first-line chemotherapeutic agent for GBM; however, the emergence of TMZ resistance represents a major therapeutic obstacle in clinical practice. This study identifies placenta-specific 8 (PLAC8) as a novel mediator of TMZ resistance in IDH-WT GBM. Elevated PLAC8 expression was strongly correlated with poorer survival rates, higher tumor grades in glioma, establishing it as an independent prognostic factor. Notably, consistent upregulation of PLAC8 was observed in both TMZ-resistant GBM cells and TMZ-treated patients, suggesting its potential as a biomarker for TMZ resistance. Mechanistic studies revealed that PLAC8 regulates TMZ sensitivity in GBM cells through the AKT-mTOR signaling pathway. Additionally, integrated bioinformatics and clinical analyses demonstrated that PLAC8 expression positively correlates with immune cell infiltration while promoting an immunosuppressive tumor microenvironment and modulating immunotherapy-related biomarkers, suggesting its potential as a predictive biomarker for immunotherapy response. In conclusion, PLAC8 represents a promising biomarker and therapeutic target for overcoming TMZ resistance and guiding immunotherapy in GBM. This study provides valuable insights for the development of personalized treatment strategies aimed at improving patient outcomes.</div></div>\",\"PeriodicalId\":9506,\"journal\":{\"name\":\"Cancer letters\",\"volume\":\"625 \",\"pages\":\"Article 217805\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer letters\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304383525003726\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304383525003726","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Aberrant PLAC8 expression characterizes glioblastoma with temozolomide resistance and an immunosuppressive microenvironment
Glioblastoma (GBM), Isocitrate Dehydrogenase-wildtype (IDH-WT) represents the most prevalent and clinically aggressive subtype of adult diffuse gliomas, typically associated with poor prognosis. Temozolomide (TMZ) remains the first-line chemotherapeutic agent for GBM; however, the emergence of TMZ resistance represents a major therapeutic obstacle in clinical practice. This study identifies placenta-specific 8 (PLAC8) as a novel mediator of TMZ resistance in IDH-WT GBM. Elevated PLAC8 expression was strongly correlated with poorer survival rates, higher tumor grades in glioma, establishing it as an independent prognostic factor. Notably, consistent upregulation of PLAC8 was observed in both TMZ-resistant GBM cells and TMZ-treated patients, suggesting its potential as a biomarker for TMZ resistance. Mechanistic studies revealed that PLAC8 regulates TMZ sensitivity in GBM cells through the AKT-mTOR signaling pathway. Additionally, integrated bioinformatics and clinical analyses demonstrated that PLAC8 expression positively correlates with immune cell infiltration while promoting an immunosuppressive tumor microenvironment and modulating immunotherapy-related biomarkers, suggesting its potential as a predictive biomarker for immunotherapy response. In conclusion, PLAC8 represents a promising biomarker and therapeutic target for overcoming TMZ resistance and guiding immunotherapy in GBM. This study provides valuable insights for the development of personalized treatment strategies aimed at improving patient outcomes.
期刊介绍:
Cancer Letters is a reputable international journal that serves as a platform for significant and original contributions in cancer research. The journal welcomes both full-length articles and Mini Reviews in the wide-ranging field of basic and translational oncology. Furthermore, it frequently presents Special Issues that shed light on current and topical areas in cancer research.
Cancer Letters is highly interested in various fundamental aspects that can cater to a diverse readership. These areas include the molecular genetics and cell biology of cancer, radiation biology, molecular pathology, hormones and cancer, viral oncology, metastasis, and chemoprevention. The journal actively focuses on experimental therapeutics, particularly the advancement of targeted therapies for personalized cancer medicine, such as metronomic chemotherapy.
By publishing groundbreaking research and promoting advancements in cancer treatments, Cancer Letters aims to actively contribute to the fight against cancer and the improvement of patient outcomes.