{"title":"ActiveNaf:一种基于nerf的基于主动学习的低剂量CT图像重建方法","authors":"Ahmad Zidane, Ilan Shimshoni","doi":"10.1016/j.ejmp.2025.104997","DOIUrl":null,"url":null,"abstract":"<div><h3>Background:</h3><div>CT imaging provides essential information about internal anatomy; however, conventional CT imaging delivers radiation doses that can become problematic for patients requiring repeated imaging, highlighting the need for dose-reduction techniques. This study aims to reduce radiation doses without compromising image quality. We propose an approach that combines Neural Attenuation Fields (NAF) with an active learning strategy to better optimize CT reconstructions given a limited number of X-ray projections.</div></div><div><h3>Method:</h3><div>Our method uses a secondary neural network to predict the Peak Signal-to-Noise Ratio (PSNR) of 2D projections generated by NAF from a range of angles in the operational range of the CT scanner. This prediction serves as a guide for the active learning process in choosing the most informative projections. In contrast to conventional techniques that acquire all X-ray projections in a single session, our technique iteratively acquires projections. The iterative process improves reconstruction quality, reduces the number of required projections, and decreases patient radiation exposure.</div></div><div><h3>Results:</h3><div>We tested our methodology on spinal imaging using a limited subset of the VerSe 2020 dataset. We compare image quality metrics (PSNR3D, SSIM3D, and PSNR2D) to the baseline method and find significant improvements. Our method achieves the same quality with 36 projections as the baseline method achieves with 60.</div></div><div><h3>Conclusions:</h3><div>Our findings demonstrate that our approach achieves high-quality 3D CT reconstructions from sparse data, producing clearer and more detailed images of anatomical structures. This work lays the groundwork for advanced imaging techniques, paving the way for safer and more efficient medical imaging procedures.</div></div>","PeriodicalId":56092,"journal":{"name":"Physica Medica-European Journal of Medical Physics","volume":"135 ","pages":"Article 104997"},"PeriodicalIF":3.3000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ActiveNaf: A novel NeRF-based approach for low-dose CT image reconstruction through active learning\",\"authors\":\"Ahmad Zidane, Ilan Shimshoni\",\"doi\":\"10.1016/j.ejmp.2025.104997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background:</h3><div>CT imaging provides essential information about internal anatomy; however, conventional CT imaging delivers radiation doses that can become problematic for patients requiring repeated imaging, highlighting the need for dose-reduction techniques. This study aims to reduce radiation doses without compromising image quality. We propose an approach that combines Neural Attenuation Fields (NAF) with an active learning strategy to better optimize CT reconstructions given a limited number of X-ray projections.</div></div><div><h3>Method:</h3><div>Our method uses a secondary neural network to predict the Peak Signal-to-Noise Ratio (PSNR) of 2D projections generated by NAF from a range of angles in the operational range of the CT scanner. This prediction serves as a guide for the active learning process in choosing the most informative projections. In contrast to conventional techniques that acquire all X-ray projections in a single session, our technique iteratively acquires projections. The iterative process improves reconstruction quality, reduces the number of required projections, and decreases patient radiation exposure.</div></div><div><h3>Results:</h3><div>We tested our methodology on spinal imaging using a limited subset of the VerSe 2020 dataset. We compare image quality metrics (PSNR3D, SSIM3D, and PSNR2D) to the baseline method and find significant improvements. Our method achieves the same quality with 36 projections as the baseline method achieves with 60.</div></div><div><h3>Conclusions:</h3><div>Our findings demonstrate that our approach achieves high-quality 3D CT reconstructions from sparse data, producing clearer and more detailed images of anatomical structures. This work lays the groundwork for advanced imaging techniques, paving the way for safer and more efficient medical imaging procedures.</div></div>\",\"PeriodicalId\":56092,\"journal\":{\"name\":\"Physica Medica-European Journal of Medical Physics\",\"volume\":\"135 \",\"pages\":\"Article 104997\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica Medica-European Journal of Medical Physics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1120179725001073\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Medica-European Journal of Medical Physics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1120179725001073","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
ActiveNaf: A novel NeRF-based approach for low-dose CT image reconstruction through active learning
Background:
CT imaging provides essential information about internal anatomy; however, conventional CT imaging delivers radiation doses that can become problematic for patients requiring repeated imaging, highlighting the need for dose-reduction techniques. This study aims to reduce radiation doses without compromising image quality. We propose an approach that combines Neural Attenuation Fields (NAF) with an active learning strategy to better optimize CT reconstructions given a limited number of X-ray projections.
Method:
Our method uses a secondary neural network to predict the Peak Signal-to-Noise Ratio (PSNR) of 2D projections generated by NAF from a range of angles in the operational range of the CT scanner. This prediction serves as a guide for the active learning process in choosing the most informative projections. In contrast to conventional techniques that acquire all X-ray projections in a single session, our technique iteratively acquires projections. The iterative process improves reconstruction quality, reduces the number of required projections, and decreases patient radiation exposure.
Results:
We tested our methodology on spinal imaging using a limited subset of the VerSe 2020 dataset. We compare image quality metrics (PSNR3D, SSIM3D, and PSNR2D) to the baseline method and find significant improvements. Our method achieves the same quality with 36 projections as the baseline method achieves with 60.
Conclusions:
Our findings demonstrate that our approach achieves high-quality 3D CT reconstructions from sparse data, producing clearer and more detailed images of anatomical structures. This work lays the groundwork for advanced imaging techniques, paving the way for safer and more efficient medical imaging procedures.
期刊介绍:
Physica Medica, European Journal of Medical Physics, publishing with Elsevier from 2007, provides an international forum for research and reviews on the following main topics:
Medical Imaging
Radiation Therapy
Radiation Protection
Measuring Systems and Signal Processing
Education and training in Medical Physics
Professional issues in Medical Physics.