关于有限温度Fredholm行列式

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED
Oleksandr Gamayun , Yuri Zhuravlev
{"title":"关于有限温度Fredholm行列式","authors":"Oleksandr Gamayun ,&nbsp;Yuri Zhuravlev","doi":"10.1016/j.physd.2025.134716","DOIUrl":null,"url":null,"abstract":"<div><div>We consider finite-temperature deformation of the sine kernel Fredholm determinants acting on the closed contours. These types of expressions usually appear as static two-point correlation functions in the models of free fermions and can be equivalently presented in terms of Toeplitz determinants. The corresponding symbol, or the phase shift, is related to the temperature weight. We present an elementary way to obtain large-distance asymptotic behavior even when the phase shift has a non-zero winding number. It is done by deforming the original kernel to the so-called effective form factors kernel that has a completely solvable matrix Riemann–Hilbert problem. This allows us to find explicitly the resolvent and address the subleading corrections. We recover Szegő, Hartwig and Fisher, and Borodin–Okounkov asymptotic formulas.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"479 ","pages":"Article 134716"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On finite-temperature Fredholm determinants\",\"authors\":\"Oleksandr Gamayun ,&nbsp;Yuri Zhuravlev\",\"doi\":\"10.1016/j.physd.2025.134716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider finite-temperature deformation of the sine kernel Fredholm determinants acting on the closed contours. These types of expressions usually appear as static two-point correlation functions in the models of free fermions and can be equivalently presented in terms of Toeplitz determinants. The corresponding symbol, or the phase shift, is related to the temperature weight. We present an elementary way to obtain large-distance asymptotic behavior even when the phase shift has a non-zero winding number. It is done by deforming the original kernel to the so-called effective form factors kernel that has a completely solvable matrix Riemann–Hilbert problem. This allows us to find explicitly the resolvent and address the subleading corrections. We recover Szegő, Hartwig and Fisher, and Borodin–Okounkov asymptotic formulas.</div></div>\",\"PeriodicalId\":20050,\"journal\":{\"name\":\"Physica D: Nonlinear Phenomena\",\"volume\":\"479 \",\"pages\":\"Article 134716\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica D: Nonlinear Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278925001939\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925001939","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑作用于封闭轮廓上的正弦核Fredholm行列式的有限温度变形。这些类型的表达式通常在自由费米子模型中表现为静态两点相关函数,并且可以等效地用Toeplitz行列式表示。相应的符号,或相移,与温度权重有关。我们提出了一种基本方法来获得大距离渐近特性,即使相移具有非零圈数。它是通过将原始核变形为具有完全可解矩阵黎曼-希尔伯特问题的所谓有效形式因子核来完成的。这使我们能够明确地找到解决方案并处理子引导更正。我们恢复了塞格、哈特维格和费雪,以及Borodin-Okounkov渐近公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On finite-temperature Fredholm determinants
We consider finite-temperature deformation of the sine kernel Fredholm determinants acting on the closed contours. These types of expressions usually appear as static two-point correlation functions in the models of free fermions and can be equivalently presented in terms of Toeplitz determinants. The corresponding symbol, or the phase shift, is related to the temperature weight. We present an elementary way to obtain large-distance asymptotic behavior even when the phase shift has a non-zero winding number. It is done by deforming the original kernel to the so-called effective form factors kernel that has a completely solvable matrix Riemann–Hilbert problem. This allows us to find explicitly the resolvent and address the subleading corrections. We recover Szegő, Hartwig and Fisher, and Borodin–Okounkov asymptotic formulas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信