{"title":"非马尔可夫动力学和共噪声下平均场最优停车的极限理论","authors":"Xihao He","doi":"10.1016/j.spa.2025.104681","DOIUrl":null,"url":null,"abstract":"<div><div>This paper focuses on a mean-field optimal stopping problem with non-Markov dynamics and common noise, inspired by Talbi et al. (2025,2022). The goal is to establish the limit theory and demonstrate the equivalence of the value functions between weak and strong formulations. The difference between the strong and weak formulations lies in the source of randomness determining the stopping time on a canonical space. In the strong formulation, the randomness of the stopping time originates from Brownian motions. In contrast, this may not necessarily be the case in the weak formulation. Additionally, a <span><math><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></math></span>-Hypothesis-type condition is introduced to guarantee the equivalence of the value functions. The limit theory encompasses the convergence of the value functions and solutions of the large population optimal stopping problem towards those of the mean-field limit, and it shows that every solution of the mean field optimal stopping problem can be approximated by solutions of the large population optimal stopping problem.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"188 ","pages":"Article 104681"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the limit theory of mean field optimal stopping with non-Markov dynamics and common noise\",\"authors\":\"Xihao He\",\"doi\":\"10.1016/j.spa.2025.104681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper focuses on a mean-field optimal stopping problem with non-Markov dynamics and common noise, inspired by Talbi et al. (2025,2022). The goal is to establish the limit theory and demonstrate the equivalence of the value functions between weak and strong formulations. The difference between the strong and weak formulations lies in the source of randomness determining the stopping time on a canonical space. In the strong formulation, the randomness of the stopping time originates from Brownian motions. In contrast, this may not necessarily be the case in the weak formulation. Additionally, a <span><math><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow></math></span>-Hypothesis-type condition is introduced to guarantee the equivalence of the value functions. The limit theory encompasses the convergence of the value functions and solutions of the large population optimal stopping problem towards those of the mean-field limit, and it shows that every solution of the mean field optimal stopping problem can be approximated by solutions of the large population optimal stopping problem.</div></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"188 \",\"pages\":\"Article 104681\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S030441492500122X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030441492500122X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
On the limit theory of mean field optimal stopping with non-Markov dynamics and common noise
This paper focuses on a mean-field optimal stopping problem with non-Markov dynamics and common noise, inspired by Talbi et al. (2025,2022). The goal is to establish the limit theory and demonstrate the equivalence of the value functions between weak and strong formulations. The difference between the strong and weak formulations lies in the source of randomness determining the stopping time on a canonical space. In the strong formulation, the randomness of the stopping time originates from Brownian motions. In contrast, this may not necessarily be the case in the weak formulation. Additionally, a -Hypothesis-type condition is introduced to guarantee the equivalence of the value functions. The limit theory encompasses the convergence of the value functions and solutions of the large population optimal stopping problem towards those of the mean-field limit, and it shows that every solution of the mean field optimal stopping problem can be approximated by solutions of the large population optimal stopping problem.
期刊介绍:
Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests.
Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.