利用集合树模型在埃及阿布达巴布进行GNSS大地测速预测

IF 3.7 3区 地球科学 Q2 ENVIRONMENTAL SCIENCES
Alshimaa Y. Abo Gharbia , Ahmed Gomaa , Mohamed Saleh , Ashraf Elkutb Mousa , Ibrahim Atiatallah Abbas , Moatamad R. Hassan
{"title":"利用集合树模型在埃及阿布达巴布进行GNSS大地测速预测","authors":"Alshimaa Y. Abo Gharbia ,&nbsp;Ahmed Gomaa ,&nbsp;Mohamed Saleh ,&nbsp;Ashraf Elkutb Mousa ,&nbsp;Ibrahim Atiatallah Abbas ,&nbsp;Moatamad R. Hassan","doi":"10.1016/j.ejrs.2025.05.008","DOIUrl":null,"url":null,"abstract":"<div><div>Estimating Global Navigation Satellite System (GNSS) velocities is essential for understanding crustal deformation and motion. This work employs the Random Forest (RF) and Gradient Boosting Machines (GBM), two machine learning (ML) techniques, to estimate horizontal velocities at specific locations using GNSS data. Crustal deformation data were acquired through Global Positioning System (GPS) techniques, with positions of eleven stations determined from eight GPS measurement campaigns. Eighty percent of the GNSS velocity data from stations in the Abu-Dabbab region were used for training, while twenty percent were reserved for testing the models. RF demonstrated superior performance in estimating east geodetic GPS velocities with the lowest mean absolute error (MAE), while GBM excelled in predicting north geodetic GPS velocities, also achieving the lowest MAE. The maximum differences between model-predicted and reference velocities were 0.09 mm/year for RF and 0.1 mm/year for GBM, underscoring the precision of these methods. Despite data constraints the study confirms the efficacy of ML techniques, particularly RF and GBM, in providing accurate GNSS velocity estimates.</div></div>","PeriodicalId":48539,"journal":{"name":"Egyptian Journal of Remote Sensing and Space Sciences","volume":"28 2","pages":"Pages 337-347"},"PeriodicalIF":3.7000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GNSS geodetic velocity prediction using ensemble tree models in Abu-Dabbab, Egypt\",\"authors\":\"Alshimaa Y. Abo Gharbia ,&nbsp;Ahmed Gomaa ,&nbsp;Mohamed Saleh ,&nbsp;Ashraf Elkutb Mousa ,&nbsp;Ibrahim Atiatallah Abbas ,&nbsp;Moatamad R. Hassan\",\"doi\":\"10.1016/j.ejrs.2025.05.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Estimating Global Navigation Satellite System (GNSS) velocities is essential for understanding crustal deformation and motion. This work employs the Random Forest (RF) and Gradient Boosting Machines (GBM), two machine learning (ML) techniques, to estimate horizontal velocities at specific locations using GNSS data. Crustal deformation data were acquired through Global Positioning System (GPS) techniques, with positions of eleven stations determined from eight GPS measurement campaigns. Eighty percent of the GNSS velocity data from stations in the Abu-Dabbab region were used for training, while twenty percent were reserved for testing the models. RF demonstrated superior performance in estimating east geodetic GPS velocities with the lowest mean absolute error (MAE), while GBM excelled in predicting north geodetic GPS velocities, also achieving the lowest MAE. The maximum differences between model-predicted and reference velocities were 0.09 mm/year for RF and 0.1 mm/year for GBM, underscoring the precision of these methods. Despite data constraints the study confirms the efficacy of ML techniques, particularly RF and GBM, in providing accurate GNSS velocity estimates.</div></div>\",\"PeriodicalId\":48539,\"journal\":{\"name\":\"Egyptian Journal of Remote Sensing and Space Sciences\",\"volume\":\"28 2\",\"pages\":\"Pages 337-347\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Egyptian Journal of Remote Sensing and Space Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110982325000274\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Journal of Remote Sensing and Space Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110982325000274","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

估计全球导航卫星系统(GNSS)的速度对于了解地壳变形和运动至关重要。这项工作采用随机森林(RF)和梯度增强机(GBM)这两种机器学习(ML)技术,使用GNSS数据估计特定位置的水平速度。通过全球定位系统(GPS)技术获得了地壳变形数据,其中11个站点的位置由8次GPS测量活动确定。来自Abu-Dabbab地区站点的80%的GNSS速度数据用于训练,而20%用于测试模型。RF算法在预测东线GPS速度方面表现优异,平均绝对误差(MAE)最低,而GBM算法在预测北线GPS速度方面表现优异,平均绝对误差(MAE)最低。模型预测速度与参考速度的最大差异为:RF为0.09 mm/年,GBM为0.1 mm/年,强调了这些方法的精度。尽管数据有限,但研究证实了机器学习技术,特别是射频和GBM技术,在提供准确的GNSS速度估计方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GNSS geodetic velocity prediction using ensemble tree models in Abu-Dabbab, Egypt
Estimating Global Navigation Satellite System (GNSS) velocities is essential for understanding crustal deformation and motion. This work employs the Random Forest (RF) and Gradient Boosting Machines (GBM), two machine learning (ML) techniques, to estimate horizontal velocities at specific locations using GNSS data. Crustal deformation data were acquired through Global Positioning System (GPS) techniques, with positions of eleven stations determined from eight GPS measurement campaigns. Eighty percent of the GNSS velocity data from stations in the Abu-Dabbab region were used for training, while twenty percent were reserved for testing the models. RF demonstrated superior performance in estimating east geodetic GPS velocities with the lowest mean absolute error (MAE), while GBM excelled in predicting north geodetic GPS velocities, also achieving the lowest MAE. The maximum differences between model-predicted and reference velocities were 0.09 mm/year for RF and 0.1 mm/year for GBM, underscoring the precision of these methods. Despite data constraints the study confirms the efficacy of ML techniques, particularly RF and GBM, in providing accurate GNSS velocity estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.10
自引率
0.00%
发文量
85
审稿时长
48 weeks
期刊介绍: The Egyptian Journal of Remote Sensing and Space Sciences (EJRS) encompasses a comprehensive range of topics within Remote Sensing, Geographic Information Systems (GIS), planetary geology, and space technology development, including theories, applications, and modeling. EJRS aims to disseminate high-quality, peer-reviewed research focusing on the advancement of remote sensing and GIS technologies and their practical applications for effective planning, sustainable development, and environmental resource conservation. The journal particularly welcomes innovative papers with broad scientific appeal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信