基于数据驱动和无监督的机器学习技术的页岩储层水平井综合质量评价和多级设计智能优化

0 ENERGY & FUELS
Wenchao Wang , Xinfang Ma , Wenzhe Zhang , Yushi Zou , Shicheng Zhang , Xin Wang , Lifeng Yang
{"title":"基于数据驱动和无监督的机器学习技术的页岩储层水平井综合质量评价和多级设计智能优化","authors":"Wenchao Wang ,&nbsp;Xinfang Ma ,&nbsp;Wenzhe Zhang ,&nbsp;Yushi Zou ,&nbsp;Shicheng Zhang ,&nbsp;Xin Wang ,&nbsp;Lifeng Yang","doi":"10.1016/j.geoen.2025.213991","DOIUrl":null,"url":null,"abstract":"<div><div>A critical strategy for shale reservoir development is the comprehensive reservoir evaluation and the fine division of fracturing grades. However, the diversity of evaluation parameters limits hydraulic fracturing optimization. Therefore, we propose an adaptive-category-gaussian-mixture-model (AC-GMM) based on a geology engineering framework, combining reservoir quality (RQ) and completion quality (CQ) to classify the composite quality index (CQI). The classification serves as the basis for an intelligent algorithm developed for fracturing design. Taking three typical wells from the Lucaogou Formation in the Junggar Basin in China as examples the following research results are summarized. First, the AC-GMM model can finely identify the fracturing grades, achieving a conformity rate of over 90 % with the field production data. Second, the paper obtains three types of fracturing grades (I, II, III) and further refines them into four grades (I, II<sub>1</sub>, II<sub>2</sub>, III), the grade I considers both high RQ and CQ, while grade II only regards the better of the double quality, and prioritizes the better CQ. Third, the intelligent algorithm groups similar qualities into the same stage, achieving up to 96 % intra-stage homogeneity, significantly enhancing hydraulic fracturing efficiency for long horizontal wells. Our work provides a data-driven framework for optimizing multi-stage fracturing designs in shale reservoirs.</div></div>","PeriodicalId":100578,"journal":{"name":"Geoenergy Science and Engineering","volume":"253 ","pages":"Article 213991"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-driven and unsupervised machine learning for comprehensive quality evaluation and intelligent optimization of multi-stage design in horizontal wells within shale reservoir\",\"authors\":\"Wenchao Wang ,&nbsp;Xinfang Ma ,&nbsp;Wenzhe Zhang ,&nbsp;Yushi Zou ,&nbsp;Shicheng Zhang ,&nbsp;Xin Wang ,&nbsp;Lifeng Yang\",\"doi\":\"10.1016/j.geoen.2025.213991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A critical strategy for shale reservoir development is the comprehensive reservoir evaluation and the fine division of fracturing grades. However, the diversity of evaluation parameters limits hydraulic fracturing optimization. Therefore, we propose an adaptive-category-gaussian-mixture-model (AC-GMM) based on a geology engineering framework, combining reservoir quality (RQ) and completion quality (CQ) to classify the composite quality index (CQI). The classification serves as the basis for an intelligent algorithm developed for fracturing design. Taking three typical wells from the Lucaogou Formation in the Junggar Basin in China as examples the following research results are summarized. First, the AC-GMM model can finely identify the fracturing grades, achieving a conformity rate of over 90 % with the field production data. Second, the paper obtains three types of fracturing grades (I, II, III) and further refines them into four grades (I, II<sub>1</sub>, II<sub>2</sub>, III), the grade I considers both high RQ and CQ, while grade II only regards the better of the double quality, and prioritizes the better CQ. Third, the intelligent algorithm groups similar qualities into the same stage, achieving up to 96 % intra-stage homogeneity, significantly enhancing hydraulic fracturing efficiency for long horizontal wells. Our work provides a data-driven framework for optimizing multi-stage fracturing designs in shale reservoirs.</div></div>\",\"PeriodicalId\":100578,\"journal\":{\"name\":\"Geoenergy Science and Engineering\",\"volume\":\"253 \",\"pages\":\"Article 213991\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoenergy Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949891025003495\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoenergy Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949891025003495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

页岩储层综合评价和压裂等级精细划分是页岩储层开发的关键策略。然而,评价参数的多样性限制了水力压裂优化。为此,提出了一种基于地质工程框架的自适应分类-高斯混合模型(AC-GMM),结合储层质量(RQ)和完井质量(CQ)对综合质量指数(CQI)进行分类。该分类可作为压裂设计智能算法的基础。以准噶尔盆地芦草沟组3口典型井为例,总结了以下研究成果:首先,AC-GMM模型可以很好地识别压裂等级,与现场生产数据的符合率超过90%。其次,得到3个压裂等级(I、II、III),进一步细化为4个等级(I、II1、II2、III),其中ⅰ级既考虑高RQ又考虑高CQ,ⅱ级只考虑双质中较好的,优先考虑CQ较好的。第三,智能算法将相似质量分组到同一段,段内均匀性高达96%,显著提高了长水平井水力压裂效率。我们的工作为优化页岩储层的多级压裂设计提供了数据驱动的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-driven and unsupervised machine learning for comprehensive quality evaluation and intelligent optimization of multi-stage design in horizontal wells within shale reservoir
A critical strategy for shale reservoir development is the comprehensive reservoir evaluation and the fine division of fracturing grades. However, the diversity of evaluation parameters limits hydraulic fracturing optimization. Therefore, we propose an adaptive-category-gaussian-mixture-model (AC-GMM) based on a geology engineering framework, combining reservoir quality (RQ) and completion quality (CQ) to classify the composite quality index (CQI). The classification serves as the basis for an intelligent algorithm developed for fracturing design. Taking three typical wells from the Lucaogou Formation in the Junggar Basin in China as examples the following research results are summarized. First, the AC-GMM model can finely identify the fracturing grades, achieving a conformity rate of over 90 % with the field production data. Second, the paper obtains three types of fracturing grades (I, II, III) and further refines them into four grades (I, II1, II2, III), the grade I considers both high RQ and CQ, while grade II only regards the better of the double quality, and prioritizes the better CQ. Third, the intelligent algorithm groups similar qualities into the same stage, achieving up to 96 % intra-stage homogeneity, significantly enhancing hydraulic fracturing efficiency for long horizontal wells. Our work provides a data-driven framework for optimizing multi-stage fracturing designs in shale reservoirs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信