Tasnim Bill Zannah , Sadia Islam Tonni , Md. Alif Sheakh , Mst. Sazia Tahosin , Afjal Hossan Sarower , Mahbuba Begum
{"title":"胎儿健康分类集成学习方法的性能比较分析","authors":"Tasnim Bill Zannah , Sadia Islam Tonni , Md. Alif Sheakh , Mst. Sazia Tahosin , Afjal Hossan Sarower , Mahbuba Begum","doi":"10.1016/j.imu.2025.101656","DOIUrl":null,"url":null,"abstract":"<div><div>Fetal health monitoring is vital for early diagnosis and intervention during pregnancy, with cardiotocography (CTG) being a standard tool for assessing fetal well-being. However, CTG interpretation often suffers from subjectivity and inconsistency, motivating the need for automated, accurate, and interpretable diagnostic models. To address these challenges, we propose a robust machine learning framework that combines effective feature selection and ensemble learning with explainability. Specifically, Recursive Feature Elimination is used to reduce redundancy and identify the ten most discriminative features. An ensemble classifier, integrating Decision Tree, Random Forest, and Gradient Boosting, is developed to enhance classification accuracy. The model is trained and evaluated on a publicly available CTG dataset, achieving 99.56 % accuracy, 99.54 % precision, 99.59 % recall, and a 99.56 % F1 score. To ensure generalization, we conducted K-fold cross-validation and confusion matrix analysis. For interpretability, the framework incorporates Local Interpretable Model-agnostic Explanation, revealing influential features in each prediction. Compared to existing approaches, our model demonstrates superior performance and transparency, offering a practical and reliable decision-support system for fetal health assessment in clinical settings.</div></div>","PeriodicalId":13953,"journal":{"name":"Informatics in Medicine Unlocked","volume":"56 ","pages":"Article 101656"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative performance analysis of ensemble learning methods for fetal health classification\",\"authors\":\"Tasnim Bill Zannah , Sadia Islam Tonni , Md. Alif Sheakh , Mst. Sazia Tahosin , Afjal Hossan Sarower , Mahbuba Begum\",\"doi\":\"10.1016/j.imu.2025.101656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Fetal health monitoring is vital for early diagnosis and intervention during pregnancy, with cardiotocography (CTG) being a standard tool for assessing fetal well-being. However, CTG interpretation often suffers from subjectivity and inconsistency, motivating the need for automated, accurate, and interpretable diagnostic models. To address these challenges, we propose a robust machine learning framework that combines effective feature selection and ensemble learning with explainability. Specifically, Recursive Feature Elimination is used to reduce redundancy and identify the ten most discriminative features. An ensemble classifier, integrating Decision Tree, Random Forest, and Gradient Boosting, is developed to enhance classification accuracy. The model is trained and evaluated on a publicly available CTG dataset, achieving 99.56 % accuracy, 99.54 % precision, 99.59 % recall, and a 99.56 % F1 score. To ensure generalization, we conducted K-fold cross-validation and confusion matrix analysis. For interpretability, the framework incorporates Local Interpretable Model-agnostic Explanation, revealing influential features in each prediction. Compared to existing approaches, our model demonstrates superior performance and transparency, offering a practical and reliable decision-support system for fetal health assessment in clinical settings.</div></div>\",\"PeriodicalId\":13953,\"journal\":{\"name\":\"Informatics in Medicine Unlocked\",\"volume\":\"56 \",\"pages\":\"Article 101656\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informatics in Medicine Unlocked\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352914825000449\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics in Medicine Unlocked","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352914825000449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Comparative performance analysis of ensemble learning methods for fetal health classification
Fetal health monitoring is vital for early diagnosis and intervention during pregnancy, with cardiotocography (CTG) being a standard tool for assessing fetal well-being. However, CTG interpretation often suffers from subjectivity and inconsistency, motivating the need for automated, accurate, and interpretable diagnostic models. To address these challenges, we propose a robust machine learning framework that combines effective feature selection and ensemble learning with explainability. Specifically, Recursive Feature Elimination is used to reduce redundancy and identify the ten most discriminative features. An ensemble classifier, integrating Decision Tree, Random Forest, and Gradient Boosting, is developed to enhance classification accuracy. The model is trained and evaluated on a publicly available CTG dataset, achieving 99.56 % accuracy, 99.54 % precision, 99.59 % recall, and a 99.56 % F1 score. To ensure generalization, we conducted K-fold cross-validation and confusion matrix analysis. For interpretability, the framework incorporates Local Interpretable Model-agnostic Explanation, revealing influential features in each prediction. Compared to existing approaches, our model demonstrates superior performance and transparency, offering a practical and reliable decision-support system for fetal health assessment in clinical settings.
期刊介绍:
Informatics in Medicine Unlocked (IMU) is an international gold open access journal covering a broad spectrum of topics within medical informatics, including (but not limited to) papers focusing on imaging, pathology, teledermatology, public health, ophthalmological, nursing and translational medicine informatics. The full papers that are published in the journal are accessible to all who visit the website.