一维氮化碳掺杂过渡金属高效选择性氮还原反应的理论研究

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Chenxi Xia , Jianfeng Liu , Hongwei Li , Wei Wei , Qiu He , Lixue Xia , Yan Zhao
{"title":"一维氮化碳掺杂过渡金属高效选择性氮还原反应的理论研究","authors":"Chenxi Xia ,&nbsp;Jianfeng Liu ,&nbsp;Hongwei Li ,&nbsp;Wei Wei ,&nbsp;Qiu He ,&nbsp;Lixue Xia ,&nbsp;Yan Zhao","doi":"10.1016/j.jcis.2025.137895","DOIUrl":null,"url":null,"abstract":"<div><div>The inert nature of N<sub>2</sub> poses a significant challenge to the nitrogen reduction reaction (NRR). In this study, we theoretically investigated one-dimensional (1D) carbon nitride nanowire (1D-C<sub>6</sub>N<sub>7</sub>) structures doped with various transition metals (TM) as potential NRR catalysts. Employing density functional theory (DFT) calculations, we elucidated the regulation of bonding interactions between the <em>d</em> orbitals of transition metals and <em>p</em> orbitals of nitrogen via the “acceptance-donation” mechanism. This interaction results in the redistribution of electrons, shifting antibonding orbitals below the Fermi level and weakening the adsorption of N<sub>2</sub>. Hence, adjusting the number of d electrons and the nature of orbital interactions can fine-tune the adsorption efficiency and NRR activity. Among the 11 transition metals studied, TM@1D-C<sub>6</sub>N<sub>7</sub> (TM = Zr, Nb, Mo) exhibit significant potential for light-induced conversion of N<sub>2</sub> to NH<sub>3</sub> and demonstrate efficient absorption in the visible spectrum, indicating their potential as effective photocatalysts for NRR. Moreover, the analysis of adsorption free energies reveals the successful suppression of the competitive hydrogen evolution reaction (HER), highlighting the outstanding selectivity for NRR. By using ab initio molecular dynamics (AIMD) to verify structural stability, we identified Nb/Mo@1D-C<sub>6</sub>N<sub>7</sub> as prime candidates for NRR owing to their high activity, selectivity, and stability.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"696 ","pages":"Article 137895"},"PeriodicalIF":9.4000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical study on one-dimensional carbon nitride doped with transition metal for highly efficient and selective nitrogen reduction reaction\",\"authors\":\"Chenxi Xia ,&nbsp;Jianfeng Liu ,&nbsp;Hongwei Li ,&nbsp;Wei Wei ,&nbsp;Qiu He ,&nbsp;Lixue Xia ,&nbsp;Yan Zhao\",\"doi\":\"10.1016/j.jcis.2025.137895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The inert nature of N<sub>2</sub> poses a significant challenge to the nitrogen reduction reaction (NRR). In this study, we theoretically investigated one-dimensional (1D) carbon nitride nanowire (1D-C<sub>6</sub>N<sub>7</sub>) structures doped with various transition metals (TM) as potential NRR catalysts. Employing density functional theory (DFT) calculations, we elucidated the regulation of bonding interactions between the <em>d</em> orbitals of transition metals and <em>p</em> orbitals of nitrogen via the “acceptance-donation” mechanism. This interaction results in the redistribution of electrons, shifting antibonding orbitals below the Fermi level and weakening the adsorption of N<sub>2</sub>. Hence, adjusting the number of d electrons and the nature of orbital interactions can fine-tune the adsorption efficiency and NRR activity. Among the 11 transition metals studied, TM@1D-C<sub>6</sub>N<sub>7</sub> (TM = Zr, Nb, Mo) exhibit significant potential for light-induced conversion of N<sub>2</sub> to NH<sub>3</sub> and demonstrate efficient absorption in the visible spectrum, indicating their potential as effective photocatalysts for NRR. Moreover, the analysis of adsorption free energies reveals the successful suppression of the competitive hydrogen evolution reaction (HER), highlighting the outstanding selectivity for NRR. By using ab initio molecular dynamics (AIMD) to verify structural stability, we identified Nb/Mo@1D-C<sub>6</sub>N<sub>7</sub> as prime candidates for NRR owing to their high activity, selectivity, and stability.</div></div>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":\"696 \",\"pages\":\"Article 137895\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002197972501286X\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002197972501286X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

N2的惰性性质对氮还原反应(NRR)提出了重大挑战。在这项研究中,我们从理论上研究了掺杂各种过渡金属(TM)的一维(1D)氮化碳纳米线(1D- c6n7)结构作为潜在的NRR催化剂。利用密度泛函理论(DFT)计算,我们阐明了过渡金属的d轨道和氮的p轨道之间通过“接受-给予”机制的键相互作用规律。这种相互作用导致了电子的重新分配,使反键轨道在费米能级以下移动,并削弱了对N2的吸附。因此,调整d电子的数量和轨道相互作用的性质可以微调吸附效率和NRR活性。在所研究的11种过渡金属中,TM@1D-C6N7 (TM = Zr, Nb, Mo)表现出明显的光诱导N2转化为NH3的潜力,并且在可见光谱中表现出有效的吸收,表明它们具有作为NRR有效光催化剂的潜力。此外,吸附自由能分析显示成功抑制了竞争性析氢反应(HER),突出了NRR的突出选择性。通过从头算分子动力学(AIMD)验证结构稳定性,我们确定Nb/Mo@1D-C6N7作为NRR的主要候选物,因为它们具有高活性、选择性和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Theoretical study on one-dimensional carbon nitride doped with transition metal for highly efficient and selective nitrogen reduction reaction
The inert nature of N2 poses a significant challenge to the nitrogen reduction reaction (NRR). In this study, we theoretically investigated one-dimensional (1D) carbon nitride nanowire (1D-C6N7) structures doped with various transition metals (TM) as potential NRR catalysts. Employing density functional theory (DFT) calculations, we elucidated the regulation of bonding interactions between the d orbitals of transition metals and p orbitals of nitrogen via the “acceptance-donation” mechanism. This interaction results in the redistribution of electrons, shifting antibonding orbitals below the Fermi level and weakening the adsorption of N2. Hence, adjusting the number of d electrons and the nature of orbital interactions can fine-tune the adsorption efficiency and NRR activity. Among the 11 transition metals studied, TM@1D-C6N7 (TM = Zr, Nb, Mo) exhibit significant potential for light-induced conversion of N2 to NH3 and demonstrate efficient absorption in the visible spectrum, indicating their potential as effective photocatalysts for NRR. Moreover, the analysis of adsorption free energies reveals the successful suppression of the competitive hydrogen evolution reaction (HER), highlighting the outstanding selectivity for NRR. By using ab initio molecular dynamics (AIMD) to verify structural stability, we identified Nb/Mo@1D-C6N7 as prime candidates for NRR owing to their high activity, selectivity, and stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信