Aliza Batya Rubenstein, Gregory R. Smith, Zidong Zhang, Xi Chen, Toby Leigh Chambers, Frederique Ruf-Zamojski, Natalia Mendelev, Wan Sze Cheng, Michel Zamojski, Mary Anne S. Amper, Venugopalan D. Nair, Andrew Reid Marderstein, Stephen B. Montgomery, Olga G. Troyanskaya, Elena Zaslavsky, Todd Trappe, Scott Trappe, Stuart C. Sealfon
{"title":"综合单细胞多组分析揭示耐力运动对肌纤维型基因调控回路的调节作用","authors":"Aliza Batya Rubenstein, Gregory R. Smith, Zidong Zhang, Xi Chen, Toby Leigh Chambers, Frederique Ruf-Zamojski, Natalia Mendelev, Wan Sze Cheng, Michel Zamojski, Mary Anne S. Amper, Venugopalan D. Nair, Andrew Reid Marderstein, Stephen B. Montgomery, Olga G. Troyanskaya, Elena Zaslavsky, Todd Trappe, Scott Trappe, Stuart C. Sealfon","doi":"10.1101/gr.280051.124","DOIUrl":null,"url":null,"abstract":"Endurance exercise induces multi-system adaptations that improve performance and benefit health. Gene regulatory circuit responses within individual skeletal muscle cell types, which are key mediators of exercise effects, have not been studied. We mapped transcriptome, chromatin, and regulatory circuit responses to acute endurance exercise in muscle using same-cell RNA-seq/ATAC-seq multiome assay. High-quality data was obtained from 37,154 nuclei comprising 14 cell types in vastus lateralis samples collected before and 3.5 hours after either 40 min cycling exercise at 70% VO2max or 40 min supine rest. Both shared and cell type specific regulatory programs were identified. Differential gene expression and accessibility sites were largely distinct within nuclei for each cell type and muscle fiber, with the largest numbers of regulatory events observed in the three muscle fiber types (slow, fast, and intermediate) and lumican (LUM) expressing fibro-adipogenic progenitor cells. Single-cell regulatory circuit triad reconstruction (transcription factor, chromatin interaction site, regulated gene) also identified largely distinct gene regulatory circuits modulated by exercise in the three muscle fiber types and LUM-expressing fibro-adipogenic progenitor cells, involving a total of 328 transcription factors acting at chromatin sites regulating 2,025 genes. This web-accessible single-cell dataset and regulatory circuitry map serve as a resource for understanding the molecular underpinnings of the metabolic and physiological effects of exercise and to guide interpretation of the exercise response literature in bulk tissue.","PeriodicalId":12678,"journal":{"name":"Genome research","volume":"32 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated single-cell multiome analysis reveals muscle fiber-type gene regulatory circuitry modulated by endurance exercise\",\"authors\":\"Aliza Batya Rubenstein, Gregory R. Smith, Zidong Zhang, Xi Chen, Toby Leigh Chambers, Frederique Ruf-Zamojski, Natalia Mendelev, Wan Sze Cheng, Michel Zamojski, Mary Anne S. Amper, Venugopalan D. Nair, Andrew Reid Marderstein, Stephen B. Montgomery, Olga G. Troyanskaya, Elena Zaslavsky, Todd Trappe, Scott Trappe, Stuart C. Sealfon\",\"doi\":\"10.1101/gr.280051.124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Endurance exercise induces multi-system adaptations that improve performance and benefit health. Gene regulatory circuit responses within individual skeletal muscle cell types, which are key mediators of exercise effects, have not been studied. We mapped transcriptome, chromatin, and regulatory circuit responses to acute endurance exercise in muscle using same-cell RNA-seq/ATAC-seq multiome assay. High-quality data was obtained from 37,154 nuclei comprising 14 cell types in vastus lateralis samples collected before and 3.5 hours after either 40 min cycling exercise at 70% VO2max or 40 min supine rest. Both shared and cell type specific regulatory programs were identified. Differential gene expression and accessibility sites were largely distinct within nuclei for each cell type and muscle fiber, with the largest numbers of regulatory events observed in the three muscle fiber types (slow, fast, and intermediate) and lumican (LUM) expressing fibro-adipogenic progenitor cells. Single-cell regulatory circuit triad reconstruction (transcription factor, chromatin interaction site, regulated gene) also identified largely distinct gene regulatory circuits modulated by exercise in the three muscle fiber types and LUM-expressing fibro-adipogenic progenitor cells, involving a total of 328 transcription factors acting at chromatin sites regulating 2,025 genes. This web-accessible single-cell dataset and regulatory circuitry map serve as a resource for understanding the molecular underpinnings of the metabolic and physiological effects of exercise and to guide interpretation of the exercise response literature in bulk tissue.\",\"PeriodicalId\":12678,\"journal\":{\"name\":\"Genome research\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1101/gr.280051.124\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/gr.280051.124","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Endurance exercise induces multi-system adaptations that improve performance and benefit health. Gene regulatory circuit responses within individual skeletal muscle cell types, which are key mediators of exercise effects, have not been studied. We mapped transcriptome, chromatin, and regulatory circuit responses to acute endurance exercise in muscle using same-cell RNA-seq/ATAC-seq multiome assay. High-quality data was obtained from 37,154 nuclei comprising 14 cell types in vastus lateralis samples collected before and 3.5 hours after either 40 min cycling exercise at 70% VO2max or 40 min supine rest. Both shared and cell type specific regulatory programs were identified. Differential gene expression and accessibility sites were largely distinct within nuclei for each cell type and muscle fiber, with the largest numbers of regulatory events observed in the three muscle fiber types (slow, fast, and intermediate) and lumican (LUM) expressing fibro-adipogenic progenitor cells. Single-cell regulatory circuit triad reconstruction (transcription factor, chromatin interaction site, regulated gene) also identified largely distinct gene regulatory circuits modulated by exercise in the three muscle fiber types and LUM-expressing fibro-adipogenic progenitor cells, involving a total of 328 transcription factors acting at chromatin sites regulating 2,025 genes. This web-accessible single-cell dataset and regulatory circuitry map serve as a resource for understanding the molecular underpinnings of the metabolic and physiological effects of exercise and to guide interpretation of the exercise response literature in bulk tissue.
期刊介绍:
Launched in 1995, Genome Research is an international, continuously published, peer-reviewed journal that focuses on research that provides novel insights into the genome biology of all organisms, including advances in genomic medicine.
Among the topics considered by the journal are genome structure and function, comparative genomics, molecular evolution, genome-scale quantitative and population genetics, proteomics, epigenomics, and systems biology. The journal also features exciting gene discoveries and reports of cutting-edge computational biology and high-throughput methodologies.
New data in these areas are published as research papers, or methods and resource reports that provide novel information on technologies or tools that will be of interest to a broad readership. Complete data sets are presented electronically on the journal''s web site where appropriate. The journal also provides Reviews, Perspectives, and Insight/Outlook articles, which present commentary on the latest advances published both here and elsewhere, placing such progress in its broader biological context.