混合态对称保护拓扑相的局部纯化密度算子

IF 11.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Yuchen Guo, Jian-Hao Zhang, Hao-Ran Zhang, Shuo Yang, Zhen Bi
{"title":"混合态对称保护拓扑相的局部纯化密度算子","authors":"Yuchen Guo, Jian-Hao Zhang, Hao-Ran Zhang, Shuo Yang, Zhen Bi","doi":"10.1103/physrevx.15.021060","DOIUrl":null,"url":null,"abstract":"We propose a tensor network approach known as the locally purified density operator (LPDO) to investigate the classification and characterization of symmetry-protected topological phases in open quantum systems. We extend the concept of injectivity, originally associated with matrix product states and projected entangled pair states, to LPDOs in (</a:mo>1</a:mn>+</a:mo>1</a:mn></a:mrow>)</a:mo>D</a:mi></a:mrow></a:math> and <f:math xmlns:f=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><f:mrow><f:mo stretchy=\"false\">(</f:mo><f:mrow><f:mn>2</f:mn><f:mo>+</f:mo><f:mn>1</f:mn></f:mrow><f:mo stretchy=\"false\">)</f:mo><f:mi mathvariant=\"normal\">D</f:mi></f:mrow></f:math> systems, unveiling two distinct types of injectivity conditions that are inherent for short-range entangled density matrices. Within the LPDO framework, we outline a classification scheme for decohered average symmetry-protected topological (ASPT) phases, consistent with earlier results obtained through spectrum sequence techniques. However, our approach offers an intuitive and explicit construction of ASPT states with the decorated domain-wall picture emerging naturally. We illustrate our framework with ASPT phases protected by a weak global symmetry and strong fermion parity symmetry and then extend it to a general group structure. Moreover, we derive both the classification data and the explicit forms of the obstruction functions using the LPDO formalism, particularly in the case of nontrivial group extension between strong and weak symmetries, where intrinsic ASPT phases may emerge. We demonstrate constructions of fixed-point LPDOs for ASPT phases in both <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:mrow><k:mo stretchy=\"false\">(</k:mo><k:mrow><k:mn>1</k:mn><k:mo>+</k:mo><k:mn>1</k:mn></k:mrow><k:mo stretchy=\"false\">)</k:mo><k:mi mathvariant=\"normal\">D</k:mi></k:mrow></k:math> and <p:math xmlns:p=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><p:mrow><p:mo stretchy=\"false\">(</p:mo><p:mrow><p:mn>2</p:mn><p:mo>+</p:mo><p:mn>1</p:mn></p:mrow><p:mo stretchy=\"false\">)</p:mo><p:mi mathvariant=\"normal\">D</p:mi></p:mrow></p:math> and discuss their physical realization in decohered or disordered systems. In particular, we construct examples of intrinsic ASPT states in <u:math xmlns:u=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><u:mrow><u:mo stretchy=\"false\">(</u:mo><u:mrow><u:mn>1</u:mn><u:mo>+</u:mo><u:mn>1</u:mn></u:mrow><u:mo stretchy=\"false\">)</u:mo><u:mi mathvariant=\"normal\">D</u:mi></u:mrow></u:math> and <z:math xmlns:z=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><z:mrow><z:mo stretchy=\"false\">(</z:mo><z:mrow><z:mn>2</z:mn><z:mo>+</z:mo><z:mn>1</z:mn></z:mrow><z:mo stretchy=\"false\">)</z:mo><z:mi mathvariant=\"normal\">D</z:mi></z:mrow></z:math> using the LPDO formalism. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"24 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Locally Purified Density Operators for Symmetry-Protected Topological Phases in Mixed States\",\"authors\":\"Yuchen Guo, Jian-Hao Zhang, Hao-Ran Zhang, Shuo Yang, Zhen Bi\",\"doi\":\"10.1103/physrevx.15.021060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a tensor network approach known as the locally purified density operator (LPDO) to investigate the classification and characterization of symmetry-protected topological phases in open quantum systems. We extend the concept of injectivity, originally associated with matrix product states and projected entangled pair states, to LPDOs in (</a:mo>1</a:mn>+</a:mo>1</a:mn></a:mrow>)</a:mo>D</a:mi></a:mrow></a:math> and <f:math xmlns:f=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><f:mrow><f:mo stretchy=\\\"false\\\">(</f:mo><f:mrow><f:mn>2</f:mn><f:mo>+</f:mo><f:mn>1</f:mn></f:mrow><f:mo stretchy=\\\"false\\\">)</f:mo><f:mi mathvariant=\\\"normal\\\">D</f:mi></f:mrow></f:math> systems, unveiling two distinct types of injectivity conditions that are inherent for short-range entangled density matrices. Within the LPDO framework, we outline a classification scheme for decohered average symmetry-protected topological (ASPT) phases, consistent with earlier results obtained through spectrum sequence techniques. However, our approach offers an intuitive and explicit construction of ASPT states with the decorated domain-wall picture emerging naturally. We illustrate our framework with ASPT phases protected by a weak global symmetry and strong fermion parity symmetry and then extend it to a general group structure. Moreover, we derive both the classification data and the explicit forms of the obstruction functions using the LPDO formalism, particularly in the case of nontrivial group extension between strong and weak symmetries, where intrinsic ASPT phases may emerge. We demonstrate constructions of fixed-point LPDOs for ASPT phases in both <k:math xmlns:k=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><k:mrow><k:mo stretchy=\\\"false\\\">(</k:mo><k:mrow><k:mn>1</k:mn><k:mo>+</k:mo><k:mn>1</k:mn></k:mrow><k:mo stretchy=\\\"false\\\">)</k:mo><k:mi mathvariant=\\\"normal\\\">D</k:mi></k:mrow></k:math> and <p:math xmlns:p=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><p:mrow><p:mo stretchy=\\\"false\\\">(</p:mo><p:mrow><p:mn>2</p:mn><p:mo>+</p:mo><p:mn>1</p:mn></p:mrow><p:mo stretchy=\\\"false\\\">)</p:mo><p:mi mathvariant=\\\"normal\\\">D</p:mi></p:mrow></p:math> and discuss their physical realization in decohered or disordered systems. In particular, we construct examples of intrinsic ASPT states in <u:math xmlns:u=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><u:mrow><u:mo stretchy=\\\"false\\\">(</u:mo><u:mrow><u:mn>1</u:mn><u:mo>+</u:mo><u:mn>1</u:mn></u:mrow><u:mo stretchy=\\\"false\\\">)</u:mo><u:mi mathvariant=\\\"normal\\\">D</u:mi></u:mrow></u:math> and <z:math xmlns:z=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><z:mrow><z:mo stretchy=\\\"false\\\">(</z:mo><z:mrow><z:mn>2</z:mn><z:mo>+</z:mo><z:mn>1</z:mn></z:mrow><z:mo stretchy=\\\"false\\\">)</z:mo><z:mi mathvariant=\\\"normal\\\">D</z:mi></z:mrow></z:math> using the LPDO formalism. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20161,\"journal\":{\"name\":\"Physical Review X\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review X\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevx.15.021060\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.021060","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种称为局部纯化密度算子(LPDO)的张量网络方法来研究开放量子系统中对称保护拓扑相的分类和表征。我们将最初与矩阵积态和投影纠缠对态相关的注入性概念扩展到(1+1)D和(2+1)D系统中的lpdo,揭示了短程纠缠密度矩阵固有的两种不同类型的注入性条件。在LPDO框架内,我们概述了退相干平均对称保护拓扑(ASPT)相位的分类方案,与早期通过频谱序列技术获得的结果一致。然而,我们的方法提供了一种直观和明确的ASPT状态构建,并自然地出现了修饰的域墙图。我们用弱全局对称和强费米子宇称对称保护的ASPT相来说明我们的框架,然后将其推广到一般群结构。此外,我们还利用LPDO形式导出了分类数据和障碍函数的显式形式,特别是在强对称性和弱对称性之间的非平凡群扩展的情况下,其中可能出现固有的ASPT相位。我们展示了(1+1)D和(2+1)D中ASPT相的定点lpdo的构造,并讨论了它们在退相干或无序系统中的物理实现。特别地,我们使用LPDO形式构造了(1+1)D和(2+1)D中固有的ASPT状态的例子。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Locally Purified Density Operators for Symmetry-Protected Topological Phases in Mixed States
We propose a tensor network approach known as the locally purified density operator (LPDO) to investigate the classification and characterization of symmetry-protected topological phases in open quantum systems. We extend the concept of injectivity, originally associated with matrix product states and projected entangled pair states, to LPDOs in (1+1)D and (2+1)D systems, unveiling two distinct types of injectivity conditions that are inherent for short-range entangled density matrices. Within the LPDO framework, we outline a classification scheme for decohered average symmetry-protected topological (ASPT) phases, consistent with earlier results obtained through spectrum sequence techniques. However, our approach offers an intuitive and explicit construction of ASPT states with the decorated domain-wall picture emerging naturally. We illustrate our framework with ASPT phases protected by a weak global symmetry and strong fermion parity symmetry and then extend it to a general group structure. Moreover, we derive both the classification data and the explicit forms of the obstruction functions using the LPDO formalism, particularly in the case of nontrivial group extension between strong and weak symmetries, where intrinsic ASPT phases may emerge. We demonstrate constructions of fixed-point LPDOs for ASPT phases in both (1+1)D and (2+1)D and discuss their physical realization in decohered or disordered systems. In particular, we construct examples of intrinsic ASPT states in (1+1)D and (2+1)D using the LPDO formalism. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review X
Physical Review X PHYSICS, MULTIDISCIPLINARY-
CiteScore
24.60
自引率
1.60%
发文量
197
审稿时长
3 months
期刊介绍: Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信