{"title":"聚合物熔体的集体短时动力学:两步淬火和Spinodal分解","authors":"David Steffen, Jörg Rottler, Marcus Müller","doi":"10.1021/acs.macromol.5c00498","DOIUrl":null,"url":null,"abstract":"In polymer melts, the segmental density does not simply relax diffusively due to intramolecular dynamics on short time scales. Using particle-based simulations of a highly coarse-grained polymer model, we explore the collective short-time dynamics under two distinct scenarios: (i) noninteracting polymer chains subject to a two-step change of an external field and (ii) phase separation due to attractive interactions. In the case of the two-step external field, we observe a nonmonotonic relaxation behavior of a collective density modulation, while for the case of the spontaneous growth of density modulations in response to the introduction of attractive interactions (spinodal decomposition), we observe an initial nonexponential growth on very short time scales, followed by a transition to exponential growth. We show that these effects can be captured by linear response theory, in contrast to dynamic self-consistent field theory (D-SCFT) that always predicts a slow exponential relaxation of segmental density modes. The short-time deviations from D-SCFT stem from two key characteristics: (i) the molecular configurations are not in equilibrium with the instantaneous density field, and (ii) the segmental dynamics display subdiffusive behavior.","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"38 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Collective Short-Time Dynamics in Polymer Melts: Two-Step Quenches and Spinodal Decomposition\",\"authors\":\"David Steffen, Jörg Rottler, Marcus Müller\",\"doi\":\"10.1021/acs.macromol.5c00498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In polymer melts, the segmental density does not simply relax diffusively due to intramolecular dynamics on short time scales. Using particle-based simulations of a highly coarse-grained polymer model, we explore the collective short-time dynamics under two distinct scenarios: (i) noninteracting polymer chains subject to a two-step change of an external field and (ii) phase separation due to attractive interactions. In the case of the two-step external field, we observe a nonmonotonic relaxation behavior of a collective density modulation, while for the case of the spontaneous growth of density modulations in response to the introduction of attractive interactions (spinodal decomposition), we observe an initial nonexponential growth on very short time scales, followed by a transition to exponential growth. We show that these effects can be captured by linear response theory, in contrast to dynamic self-consistent field theory (D-SCFT) that always predicts a slow exponential relaxation of segmental density modes. The short-time deviations from D-SCFT stem from two key characteristics: (i) the molecular configurations are not in equilibrium with the instantaneous density field, and (ii) the segmental dynamics display subdiffusive behavior.\",\"PeriodicalId\":51,\"journal\":{\"name\":\"Macromolecules\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.macromol.5c00498\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.macromol.5c00498","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Collective Short-Time Dynamics in Polymer Melts: Two-Step Quenches and Spinodal Decomposition
In polymer melts, the segmental density does not simply relax diffusively due to intramolecular dynamics on short time scales. Using particle-based simulations of a highly coarse-grained polymer model, we explore the collective short-time dynamics under two distinct scenarios: (i) noninteracting polymer chains subject to a two-step change of an external field and (ii) phase separation due to attractive interactions. In the case of the two-step external field, we observe a nonmonotonic relaxation behavior of a collective density modulation, while for the case of the spontaneous growth of density modulations in response to the introduction of attractive interactions (spinodal decomposition), we observe an initial nonexponential growth on very short time scales, followed by a transition to exponential growth. We show that these effects can be captured by linear response theory, in contrast to dynamic self-consistent field theory (D-SCFT) that always predicts a slow exponential relaxation of segmental density modes. The short-time deviations from D-SCFT stem from two key characteristics: (i) the molecular configurations are not in equilibrium with the instantaneous density field, and (ii) the segmental dynamics display subdiffusive behavior.
期刊介绍:
Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.