训练数据告诉我们很多关于健康人工智能工具可能受益的信息。

Alison P Paprica
{"title":"训练数据告诉我们很多关于健康人工智能工具可能受益的信息。","authors":"Alison P Paprica","doi":"10.12927/hcpap.2025.27569","DOIUrl":null,"url":null,"abstract":"<p><p>Appropriate training data are a prerequisite for health AI tools. Policy makers, clinicians and patients can assess the datasets used to train AI models as a practical step in determining whom health AI tools are likely to benefit. Analyses of training datasets can help prioritize which health AI tools to validate and help identify where changes are needed to improve the equity of health AI.</p>","PeriodicalId":101342,"journal":{"name":"HealthcarePapers","volume":"22 4","pages":"58-62"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Training Data Tell Us a Lot About Whom Health AI Tools Are Likely to Benefit.\",\"authors\":\"Alison P Paprica\",\"doi\":\"10.12927/hcpap.2025.27569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Appropriate training data are a prerequisite for health AI tools. Policy makers, clinicians and patients can assess the datasets used to train AI models as a practical step in determining whom health AI tools are likely to benefit. Analyses of training datasets can help prioritize which health AI tools to validate and help identify where changes are needed to improve the equity of health AI.</p>\",\"PeriodicalId\":101342,\"journal\":{\"name\":\"HealthcarePapers\",\"volume\":\"22 4\",\"pages\":\"58-62\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HealthcarePapers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12927/hcpap.2025.27569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HealthcarePapers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12927/hcpap.2025.27569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

适当的训练数据是卫生人工智能工具的先决条件。政策制定者、临床医生和患者可以评估用于训练人工智能模型的数据集,作为确定卫生人工智能工具可能受益的实际步骤。对训练数据集的分析有助于确定需要验证哪些卫生人工智能工具的优先次序,并有助于确定需要进行哪些更改以提高卫生人工智能的公平性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Training Data Tell Us a Lot About Whom Health AI Tools Are Likely to Benefit.

Appropriate training data are a prerequisite for health AI tools. Policy makers, clinicians and patients can assess the datasets used to train AI models as a practical step in determining whom health AI tools are likely to benefit. Analyses of training datasets can help prioritize which health AI tools to validate and help identify where changes are needed to improve the equity of health AI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信