Camiryn J. Kardal , Spencer R. Dmytruk , Abdullah Qureshi , Cheng-Wei Wu
{"title":"模式生物秀丽隐杆线虫化学毒性筛选的高含量细胞成像。","authors":"Camiryn J. Kardal , Spencer R. Dmytruk , Abdullah Qureshi , Cheng-Wei Wu","doi":"10.1016/j.vascn.2025.107756","DOIUrl":null,"url":null,"abstract":"<div><div>The use of animal models for screening environmental chemicals for toxicity is an important step towards determining potential hazards to humans. Due to the large number of environmental chemicals with unknown biological activity, high-throughput screening has served as the primary method in toxicity testing for the past decades. However, with the emergence of diverse cellular targets that have been shown to be adversely affected by chemicals, a transition towards high-throughput screening that incorporates high-content analysis provides an array of cutting-edge experimental advantages. Here, we utilized the genetic model organism <em>Caenorhabditis elegans</em> to demonstrate how high-content screening can be utilized to identify new chemical modifiers of RNA splicing with the U.S. ToxCast chemical library. Through this semi-automated workflow, we highlight areas where modern high-content screening platforms provide advantages that improves on traditional methodology in high-throughput screening assays to maximize quantitative and qualitative data types collected.</div></div>","PeriodicalId":16767,"journal":{"name":"Journal of pharmacological and toxicological methods","volume":"134 ","pages":"Article 107756"},"PeriodicalIF":1.3000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-content cell imaging for chemical toxicity screening in the model organism Caenorhabditis elegans\",\"authors\":\"Camiryn J. Kardal , Spencer R. Dmytruk , Abdullah Qureshi , Cheng-Wei Wu\",\"doi\":\"10.1016/j.vascn.2025.107756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The use of animal models for screening environmental chemicals for toxicity is an important step towards determining potential hazards to humans. Due to the large number of environmental chemicals with unknown biological activity, high-throughput screening has served as the primary method in toxicity testing for the past decades. However, with the emergence of diverse cellular targets that have been shown to be adversely affected by chemicals, a transition towards high-throughput screening that incorporates high-content analysis provides an array of cutting-edge experimental advantages. Here, we utilized the genetic model organism <em>Caenorhabditis elegans</em> to demonstrate how high-content screening can be utilized to identify new chemical modifiers of RNA splicing with the U.S. ToxCast chemical library. Through this semi-automated workflow, we highlight areas where modern high-content screening platforms provide advantages that improves on traditional methodology in high-throughput screening assays to maximize quantitative and qualitative data types collected.</div></div>\",\"PeriodicalId\":16767,\"journal\":{\"name\":\"Journal of pharmacological and toxicological methods\",\"volume\":\"134 \",\"pages\":\"Article 107756\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of pharmacological and toxicological methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1056871925001765\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmacological and toxicological methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1056871925001765","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
High-content cell imaging for chemical toxicity screening in the model organism Caenorhabditis elegans
The use of animal models for screening environmental chemicals for toxicity is an important step towards determining potential hazards to humans. Due to the large number of environmental chemicals with unknown biological activity, high-throughput screening has served as the primary method in toxicity testing for the past decades. However, with the emergence of diverse cellular targets that have been shown to be adversely affected by chemicals, a transition towards high-throughput screening that incorporates high-content analysis provides an array of cutting-edge experimental advantages. Here, we utilized the genetic model organism Caenorhabditis elegans to demonstrate how high-content screening can be utilized to identify new chemical modifiers of RNA splicing with the U.S. ToxCast chemical library. Through this semi-automated workflow, we highlight areas where modern high-content screening platforms provide advantages that improves on traditional methodology in high-throughput screening assays to maximize quantitative and qualitative data types collected.
期刊介绍:
Journal of Pharmacological and Toxicological Methods publishes original articles on current methods of investigation used in pharmacology and toxicology. Pharmacology and toxicology are defined in the broadest sense, referring to actions of drugs and chemicals on all living systems. With its international editorial board and noted contributors, Journal of Pharmacological and Toxicological Methods is the leading journal devoted exclusively to experimental procedures used by pharmacologists and toxicologists.