基于深度神经网络的个体治疗效果扩展基准推断。

IF 1.6 2区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS
Statistics and Computing Pub Date : 2025-01-01 Epub Date: 2025-05-17 DOI:10.1007/s11222-025-10624-8
Sehwan Kim, Faming Liang
{"title":"基于深度神经网络的个体治疗效果扩展基准推断。","authors":"Sehwan Kim, Faming Liang","doi":"10.1007/s11222-025-10624-8","DOIUrl":null,"url":null,"abstract":"<p><p>Individual treatment effect estimation has gained significant attention in recent data science literature. This work introduces the Double Neural Network (Double-NN) method to address this problem within the framework of extended fiducial inference (EFI). In the proposed method, deep neural networks are used to model the treatment and control effect functions, while an additional neural network is employed to estimate their parameters. The universal approximation capability of deep neural networks ensures the broad applicability of this method. Numerical results highlight the superior performance of the proposed Double-NN method compared to the conformal quantile regression (CQR) method in individual treatment effect estimation. From the perspective of statistical inference, this work advances the theory and methodology for statistical inference of large models. Specifically, it is theoretically proven that the proposed method permits the model size to increase with the sample size <i>n</i> at a rate of <math><mrow><mi>O</mi> <mo>(</mo> <msup><mi>n</mi> <mi>ζ</mi></msup> <mo>)</mo></mrow> </math> for some <math><mrow><mn>0</mn> <mo>≤</mo> <mi>ζ</mi> <mo><</mo> <mn>1</mn></mrow> </math> , while still maintaining proper quantification of uncertainty in the model parameters. This result marks a significant improvement compared to the range <math><mrow><mn>0</mn> <mo>≤</mo> <mi>ζ</mi> <mo><</mo> <mfrac><mn>1</mn> <mn>2</mn></mfrac> </mrow> </math> required by the classical central limit theorem. Furthermore, this work provides a rigorous framework for quantifying the uncertainty of deep neural networks under the neural scaling law, representing a substantial contribution to the statistical understanding of large-scale neural network models.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11222-025-10624-8.</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":"35 4","pages":"97"},"PeriodicalIF":1.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12085359/pdf/","citationCount":"0","resultStr":"{\"title\":\"Extended fiducial inference for individual treatment effects via deep neural networks.\",\"authors\":\"Sehwan Kim, Faming Liang\",\"doi\":\"10.1007/s11222-025-10624-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Individual treatment effect estimation has gained significant attention in recent data science literature. This work introduces the Double Neural Network (Double-NN) method to address this problem within the framework of extended fiducial inference (EFI). In the proposed method, deep neural networks are used to model the treatment and control effect functions, while an additional neural network is employed to estimate their parameters. The universal approximation capability of deep neural networks ensures the broad applicability of this method. Numerical results highlight the superior performance of the proposed Double-NN method compared to the conformal quantile regression (CQR) method in individual treatment effect estimation. From the perspective of statistical inference, this work advances the theory and methodology for statistical inference of large models. Specifically, it is theoretically proven that the proposed method permits the model size to increase with the sample size <i>n</i> at a rate of <math><mrow><mi>O</mi> <mo>(</mo> <msup><mi>n</mi> <mi>ζ</mi></msup> <mo>)</mo></mrow> </math> for some <math><mrow><mn>0</mn> <mo>≤</mo> <mi>ζ</mi> <mo><</mo> <mn>1</mn></mrow> </math> , while still maintaining proper quantification of uncertainty in the model parameters. This result marks a significant improvement compared to the range <math><mrow><mn>0</mn> <mo>≤</mo> <mi>ζ</mi> <mo><</mo> <mfrac><mn>1</mn> <mn>2</mn></mfrac> </mrow> </math> required by the classical central limit theorem. Furthermore, this work provides a rigorous framework for quantifying the uncertainty of deep neural networks under the neural scaling law, representing a substantial contribution to the statistical understanding of large-scale neural network models.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11222-025-10624-8.</p>\",\"PeriodicalId\":22058,\"journal\":{\"name\":\"Statistics and Computing\",\"volume\":\"35 4\",\"pages\":\"97\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12085359/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics and Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11222-025-10624-8\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11222-025-10624-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

在最近的数据科学文献中,个体治疗效果估计得到了极大的关注。本文介绍了双神经网络(Double- nn)方法在扩展基准推理(EFI)框架内解决这一问题。在该方法中,采用深度神经网络对处理和控制效果函数进行建模,并采用附加神经网络对其参数进行估计。深度神经网络的通用逼近能力保证了该方法的广泛适用性。数值结果表明,该方法在个体治疗效果估计方面优于保形分位数回归(CQR)方法。从统计推断的角度出发,提出了大模型统计推断的理论和方法。具体来说,理论上证明了所提出的方法允许模型尺寸随样本量n以0 (n ζ)的速率增加,对于某些0≤ζ 1,同时仍然保持模型参数中不确定性的适当量化。与经典中心极限定理要求的0≤ζ 12的范围相比,这个结果标志着一个显著的改进。此外,这项工作为在神经标度律下量化深度神经网络的不确定性提供了一个严格的框架,对大规模神经网络模型的统计理解做出了重大贡献。补充资料:在线版本包含补充资料,下载地址:10.1007/s11222-025-10624-8。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extended fiducial inference for individual treatment effects via deep neural networks.

Individual treatment effect estimation has gained significant attention in recent data science literature. This work introduces the Double Neural Network (Double-NN) method to address this problem within the framework of extended fiducial inference (EFI). In the proposed method, deep neural networks are used to model the treatment and control effect functions, while an additional neural network is employed to estimate their parameters. The universal approximation capability of deep neural networks ensures the broad applicability of this method. Numerical results highlight the superior performance of the proposed Double-NN method compared to the conformal quantile regression (CQR) method in individual treatment effect estimation. From the perspective of statistical inference, this work advances the theory and methodology for statistical inference of large models. Specifically, it is theoretically proven that the proposed method permits the model size to increase with the sample size n at a rate of O ( n ζ ) for some 0 ζ < 1 , while still maintaining proper quantification of uncertainty in the model parameters. This result marks a significant improvement compared to the range 0 ζ < 1 2 required by the classical central limit theorem. Furthermore, this work provides a rigorous framework for quantifying the uncertainty of deep neural networks under the neural scaling law, representing a substantial contribution to the statistical understanding of large-scale neural network models.

Supplementary information: The online version contains supplementary material available at 10.1007/s11222-025-10624-8.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistics and Computing
Statistics and Computing 数学-计算机:理论方法
CiteScore
3.20
自引率
4.50%
发文量
93
审稿时长
6-12 weeks
期刊介绍: Statistics and Computing is a bi-monthly refereed journal which publishes papers covering the range of the interface between the statistical and computing sciences. In particular, it addresses the use of statistical concepts in computing science, for example in machine learning, computer vision and data analytics, as well as the use of computers in data modelling, prediction and analysis. Specific topics which are covered include: techniques for evaluating analytically intractable problems such as bootstrap resampling, Markov chain Monte Carlo, sequential Monte Carlo, approximate Bayesian computation, search and optimization methods, stochastic simulation and Monte Carlo, graphics, computer environments, statistical approaches to software errors, information retrieval, machine learning, statistics of databases and database technology, huge data sets and big data analytics, computer algebra, graphical models, image processing, tomography, inverse problems and uncertainty quantification. In addition, the journal contains original research reports, authoritative review papers, discussed papers, and occasional special issues on particular topics or carrying proceedings of relevant conferences. Statistics and Computing also publishes book review and software review sections.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信