马骨骼肌对高温环境下急性运动的转录组反应。

IF 2.5 4区 生物学 Q3 CELL BIOLOGY
Kenya Takahashi, Takanaga Shirai, Kazutaka Mukai, Yusaku Ebisuda, Fumi Sugiyama, Toshinobu Yoshida, Yu Kitaoka
{"title":"马骨骼肌对高温环境下急性运动的转录组反应。","authors":"Kenya Takahashi, Takanaga Shirai, Kazutaka Mukai, Yusaku Ebisuda, Fumi Sugiyama, Toshinobu Yoshida, Yu Kitaoka","doi":"10.1152/physiolgenomics.00200.2024","DOIUrl":null,"url":null,"abstract":"<p><p>While exercise performance deteriorates in hot environments, heat stress may contribute to exercise-induced adaptations in skeletal muscle. In this study, we assessed transcriptional profiles of equine skeletal muscle following 3 min of high-intensity exercise (at the speed eliciting their maximal oxygen uptake) in cool (Wet Bulb Globe Temperature [WBGT] 15°C) or hot (WBGT 30°C) conditions. Differential gene expression was identified using DESeq2 (false discovery rate cutoff: 0.05, minimal fold change: 1.5). At 4 h after exercise, RNA-seq identified 176 and 156 genes that were differentially expressed in the middle gluteal muscle in hot and cool conditions, respectively. Of these genes, 110 genes were altered in both conditions, whereas 66 genes were only responsive to exercise in the hot condition. Between the two environmental conditions, the expression of only one gene (KANK1) was higher in the hot condition compared with the cool condition. Pathway analysis revealed that the response to temperature stimulus was upregulated only after exercise in the hot condition. Although the overall transcriptional response to exercise was similar in both environmental conditions, our results provide insight into the molecular mechanisms of equine skeletal muscle adaptation to heat acclimation.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transcriptomic responses of equine skeletal muscle to acute exercise in a hot environment.\",\"authors\":\"Kenya Takahashi, Takanaga Shirai, Kazutaka Mukai, Yusaku Ebisuda, Fumi Sugiyama, Toshinobu Yoshida, Yu Kitaoka\",\"doi\":\"10.1152/physiolgenomics.00200.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>While exercise performance deteriorates in hot environments, heat stress may contribute to exercise-induced adaptations in skeletal muscle. In this study, we assessed transcriptional profiles of equine skeletal muscle following 3 min of high-intensity exercise (at the speed eliciting their maximal oxygen uptake) in cool (Wet Bulb Globe Temperature [WBGT] 15°C) or hot (WBGT 30°C) conditions. Differential gene expression was identified using DESeq2 (false discovery rate cutoff: 0.05, minimal fold change: 1.5). At 4 h after exercise, RNA-seq identified 176 and 156 genes that were differentially expressed in the middle gluteal muscle in hot and cool conditions, respectively. Of these genes, 110 genes were altered in both conditions, whereas 66 genes were only responsive to exercise in the hot condition. Between the two environmental conditions, the expression of only one gene (KANK1) was higher in the hot condition compared with the cool condition. Pathway analysis revealed that the response to temperature stimulus was upregulated only after exercise in the hot condition. Although the overall transcriptional response to exercise was similar in both environmental conditions, our results provide insight into the molecular mechanisms of equine skeletal muscle adaptation to heat acclimation.</p>\",\"PeriodicalId\":20129,\"journal\":{\"name\":\"Physiological genomics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1152/physiolgenomics.00200.2024\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/physiolgenomics.00200.2024","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

当运动表现在炎热环境中恶化时,热应激可能有助于骨骼肌的运动诱导适应。在这项研究中,我们评估了马骨骼肌在凉爽(湿球温度[WBGT] 15°C)或炎热(WBGT 30°C)条件下进行3分钟高强度运动(以激发其最大摄氧量的速度)后的转录谱。使用DESeq2鉴定差异基因表达(错误发现率截止值:0.05,最小倍数变化:1.5)。在运动后4小时,RNA-seq分别鉴定出176个和156个基因在热和冷条件下在臀中肌中差异表达。在这些基因中,110个基因在两种条件下都发生了改变,而66个基因只对高温条件下的运动有反应。在两种环境条件下,只有一个基因(KANK1)在高温条件下的表达高于低温条件。通路分析表明,在高温条件下,只有在运动后,对温度刺激的反应才会上调。尽管在两种环境条件下,运动的总体转录反应是相似的,但我们的研究结果为马骨骼肌适应热驯化的分子机制提供了深入的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transcriptomic responses of equine skeletal muscle to acute exercise in a hot environment.

While exercise performance deteriorates in hot environments, heat stress may contribute to exercise-induced adaptations in skeletal muscle. In this study, we assessed transcriptional profiles of equine skeletal muscle following 3 min of high-intensity exercise (at the speed eliciting their maximal oxygen uptake) in cool (Wet Bulb Globe Temperature [WBGT] 15°C) or hot (WBGT 30°C) conditions. Differential gene expression was identified using DESeq2 (false discovery rate cutoff: 0.05, minimal fold change: 1.5). At 4 h after exercise, RNA-seq identified 176 and 156 genes that were differentially expressed in the middle gluteal muscle in hot and cool conditions, respectively. Of these genes, 110 genes were altered in both conditions, whereas 66 genes were only responsive to exercise in the hot condition. Between the two environmental conditions, the expression of only one gene (KANK1) was higher in the hot condition compared with the cool condition. Pathway analysis revealed that the response to temperature stimulus was upregulated only after exercise in the hot condition. Although the overall transcriptional response to exercise was similar in both environmental conditions, our results provide insight into the molecular mechanisms of equine skeletal muscle adaptation to heat acclimation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physiological genomics
Physiological genomics 生物-生理学
CiteScore
6.10
自引率
0.00%
发文量
46
审稿时长
4-8 weeks
期刊介绍: The Physiological Genomics publishes original papers, reviews and rapid reports in a wide area of research focused on uncovering the links between genes and physiology at all levels of biological organization. Articles on topics ranging from single genes to the whole genome and their links to the physiology of humans, any model organism, organ, tissue or cell are welcome. Areas of interest include complex polygenic traits preferably of importance to human health and gene-function relationships of disease processes. Specifically, the Journal has dedicated Sections focused on genome-wide association studies (GWAS) to function, cardiovascular, renal, metabolic and neurological systems, exercise physiology, pharmacogenomics, clinical, translational and genomics for precision medicine, comparative and statistical genomics and databases. For further details on research themes covered within these Sections, please refer to the descriptions given under each Section.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信