Laura Carr, Sanam Mustafa, Lyndsey E Collins-Praino
{"title":"小胶质细胞衰老的特征。","authors":"Laura Carr, Sanam Mustafa, Lyndsey E Collins-Praino","doi":"10.1007/s10571-025-01564-y","DOIUrl":null,"url":null,"abstract":"<p><p>As ageing is linked to the development of neurodegenerative diseases (NDs), such as Alzheimer's Disease and Parkinson's Disease, it is important to disentangle the independent effect of age-related changes from those due to disease processes. To do so, changes to central nervous system (CNS) cells as a function of advanced age need better characterisation. Microglia are of particular interest due to their proposed links with the development and progression of NDs through control of the CNS immune response. Therefore, understanding the extent to which microglial dysfunction is related to phyisological ageing, rather than a disease process, is critical. As microglia age, they are believed to take on a pro-inflammatory phenotype with a distinct dystrophic morphology. Nevertheless, while established hallmarks of ageing have been investigated across a range of other cell types, such as macrophages, a detailed consideration of functional changes that occur in aged microglia remains elusive. Here, we describe the dynamic phenotypes of microglia and evaluate the current state of understanding of microglial ageing, focusing on the recently updated twelve hallmarks of ageing. Understanding how these hallmarks present in microglia represents a step towards better characterisation of microglial ageing, which is essential in the development of more representative models of NDs.</p>","PeriodicalId":9742,"journal":{"name":"Cellular and Molecular Neurobiology","volume":"45 1","pages":"45"},"PeriodicalIF":3.6000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12089641/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Hallmarks of Ageing in Microglia.\",\"authors\":\"Laura Carr, Sanam Mustafa, Lyndsey E Collins-Praino\",\"doi\":\"10.1007/s10571-025-01564-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As ageing is linked to the development of neurodegenerative diseases (NDs), such as Alzheimer's Disease and Parkinson's Disease, it is important to disentangle the independent effect of age-related changes from those due to disease processes. To do so, changes to central nervous system (CNS) cells as a function of advanced age need better characterisation. Microglia are of particular interest due to their proposed links with the development and progression of NDs through control of the CNS immune response. Therefore, understanding the extent to which microglial dysfunction is related to phyisological ageing, rather than a disease process, is critical. As microglia age, they are believed to take on a pro-inflammatory phenotype with a distinct dystrophic morphology. Nevertheless, while established hallmarks of ageing have been investigated across a range of other cell types, such as macrophages, a detailed consideration of functional changes that occur in aged microglia remains elusive. Here, we describe the dynamic phenotypes of microglia and evaluate the current state of understanding of microglial ageing, focusing on the recently updated twelve hallmarks of ageing. Understanding how these hallmarks present in microglia represents a step towards better characterisation of microglial ageing, which is essential in the development of more representative models of NDs.</p>\",\"PeriodicalId\":9742,\"journal\":{\"name\":\"Cellular and Molecular Neurobiology\",\"volume\":\"45 1\",\"pages\":\"45\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12089641/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular and Molecular Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10571-025-01564-y\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10571-025-01564-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
As ageing is linked to the development of neurodegenerative diseases (NDs), such as Alzheimer's Disease and Parkinson's Disease, it is important to disentangle the independent effect of age-related changes from those due to disease processes. To do so, changes to central nervous system (CNS) cells as a function of advanced age need better characterisation. Microglia are of particular interest due to their proposed links with the development and progression of NDs through control of the CNS immune response. Therefore, understanding the extent to which microglial dysfunction is related to phyisological ageing, rather than a disease process, is critical. As microglia age, they are believed to take on a pro-inflammatory phenotype with a distinct dystrophic morphology. Nevertheless, while established hallmarks of ageing have been investigated across a range of other cell types, such as macrophages, a detailed consideration of functional changes that occur in aged microglia remains elusive. Here, we describe the dynamic phenotypes of microglia and evaluate the current state of understanding of microglial ageing, focusing on the recently updated twelve hallmarks of ageing. Understanding how these hallmarks present in microglia represents a step towards better characterisation of microglial ageing, which is essential in the development of more representative models of NDs.
期刊介绍:
Cellular and Molecular Neurobiology publishes original research concerned with the analysis of neuronal and brain function at the cellular and subcellular levels. The journal offers timely, peer-reviewed articles that describe anatomic, genetic, physiologic, pharmacologic, and biochemical approaches to the study of neuronal function and the analysis of elementary mechanisms. Studies are presented on isolated mammalian tissues and intact animals, with investigations aimed at the molecular mechanisms or neuronal responses at the level of single cells. Cellular and Molecular Neurobiology also presents studies of the effects of neurons on other organ systems, such as analysis of the electrical or biochemical response to neurotransmitters or neurohormones on smooth muscle or gland cells.