多次感染奥米克隆变异增加了奥米克隆特异性中和抗体的广度和效力。

IF 13 1区 生物学 Q1 CELL BIOLOGY
Lei You, Luning Zhang, Shengqun Ouyang, Bo Gao, Yanan Li, Jialu Li, Ningbo Wu, Hong Wang, Shiqi Sun, Jinfeng Li, Zi Yin, Ziyang Xu, Yao Chen, Yiwen Zhu, Shuangyan Zhang, Zhan Xu, Tianyu Zhang, Zhaoyuan Liu, Chuanxin Huang, Bin Li, Jieming Qu, Bing Su, Leng-Siew Yeap
{"title":"多次感染奥米克隆变异增加了奥米克隆特异性中和抗体的广度和效力。","authors":"Lei You, Luning Zhang, Shengqun Ouyang, Bo Gao, Yanan Li, Jialu Li, Ningbo Wu, Hong Wang, Shiqi Sun, Jinfeng Li, Zi Yin, Ziyang Xu, Yao Chen, Yiwen Zhu, Shuangyan Zhang, Zhan Xu, Tianyu Zhang, Zhaoyuan Liu, Chuanxin Huang, Bin Li, Jieming Qu, Bing Su, Leng-Siew Yeap","doi":"10.1038/s41421-025-00800-5","DOIUrl":null,"url":null,"abstract":"<p><p>Despite high vaccination rates, highly evolved Omicron variants have caused widespread infections and, in some cases, recurrent infections in the human population. As the population continues to be threatened by new variants, it is critical to understand how the dynamic cross-reactive antibody response evolves and affects protection. Here, we longitudinally profiled neutralizing antibodies in individuals who experienced three Omicron waves in China over an 18-month period following the lifting of the COVID restriction. We found that individuals with BA.5/BF.7 and XBB dual infections had increased breadth and neutralizing potency of Omicron-specific antibodies compared to those with a BA.5/BF.7 single infection, and were thus more resistant to JN.1/XDV.1 infection in the third wave. During the second infection, a new imprint based on the previously infected variant was established, and the antibodies developed high cross-reactivity against the Omicron variants and less against vaccine-derived WT SARS-CoV-2. Our results suggest that the high titer and breadth of cross-reactive antibodies from multiple infections may be protective against future infection with Omicron variants such as JN.1, but may still be vulnerable to antigenically advanced subvariants such as KP.3.1.1 and XEC.</p>","PeriodicalId":9674,"journal":{"name":"Cell Discovery","volume":"11 1","pages":"49"},"PeriodicalIF":13.0000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12089387/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multiple infections with Omicron variants increase breadth and potency of Omicron-specific neutralizing antibodies.\",\"authors\":\"Lei You, Luning Zhang, Shengqun Ouyang, Bo Gao, Yanan Li, Jialu Li, Ningbo Wu, Hong Wang, Shiqi Sun, Jinfeng Li, Zi Yin, Ziyang Xu, Yao Chen, Yiwen Zhu, Shuangyan Zhang, Zhan Xu, Tianyu Zhang, Zhaoyuan Liu, Chuanxin Huang, Bin Li, Jieming Qu, Bing Su, Leng-Siew Yeap\",\"doi\":\"10.1038/s41421-025-00800-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite high vaccination rates, highly evolved Omicron variants have caused widespread infections and, in some cases, recurrent infections in the human population. As the population continues to be threatened by new variants, it is critical to understand how the dynamic cross-reactive antibody response evolves and affects protection. Here, we longitudinally profiled neutralizing antibodies in individuals who experienced three Omicron waves in China over an 18-month period following the lifting of the COVID restriction. We found that individuals with BA.5/BF.7 and XBB dual infections had increased breadth and neutralizing potency of Omicron-specific antibodies compared to those with a BA.5/BF.7 single infection, and were thus more resistant to JN.1/XDV.1 infection in the third wave. During the second infection, a new imprint based on the previously infected variant was established, and the antibodies developed high cross-reactivity against the Omicron variants and less against vaccine-derived WT SARS-CoV-2. Our results suggest that the high titer and breadth of cross-reactive antibodies from multiple infections may be protective against future infection with Omicron variants such as JN.1, but may still be vulnerable to antigenically advanced subvariants such as KP.3.1.1 and XEC.</p>\",\"PeriodicalId\":9674,\"journal\":{\"name\":\"Cell Discovery\",\"volume\":\"11 1\",\"pages\":\"49\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12089387/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Discovery\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41421-025-00800-5\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Discovery","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41421-025-00800-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

尽管疫苗接种率很高,但高度进化的欧米克隆变异引起了广泛的感染,在某些情况下,在人群中引起了复发性感染。随着人群继续受到新变异的威胁,了解动态交叉反应抗体反应如何演变并影响保护是至关重要的。在这里,我们纵向分析了在解除COVID限制后的18个月内在中国经历过三次欧米克隆波的个体的中和抗体。我们发现BA.5/BF的个体。与BA.5/BF相比,7和XBB双重感染增加了ommicron特异性抗体的广度和中和效力。7次单次感染,因此对jn1 /XDV具有更强的抗性。第三波有一例感染在第二次感染期间,基于先前感染的变体建立了新的印记,抗体对Omicron变体产生高交叉反应性,对疫苗衍生的WT SARS-CoV-2产生低交叉反应性。我们的研究结果表明,来自多次感染的交叉反应抗体的高滴度和广度可能对未来感染Omicron变体(如j .1)有保护作用,但可能仍然容易受到抗原晚期亚变体(如KP.3.1.1和XEC)的感染。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple infections with Omicron variants increase breadth and potency of Omicron-specific neutralizing antibodies.

Despite high vaccination rates, highly evolved Omicron variants have caused widespread infections and, in some cases, recurrent infections in the human population. As the population continues to be threatened by new variants, it is critical to understand how the dynamic cross-reactive antibody response evolves and affects protection. Here, we longitudinally profiled neutralizing antibodies in individuals who experienced three Omicron waves in China over an 18-month period following the lifting of the COVID restriction. We found that individuals with BA.5/BF.7 and XBB dual infections had increased breadth and neutralizing potency of Omicron-specific antibodies compared to those with a BA.5/BF.7 single infection, and were thus more resistant to JN.1/XDV.1 infection in the third wave. During the second infection, a new imprint based on the previously infected variant was established, and the antibodies developed high cross-reactivity against the Omicron variants and less against vaccine-derived WT SARS-CoV-2. Our results suggest that the high titer and breadth of cross-reactive antibodies from multiple infections may be protective against future infection with Omicron variants such as JN.1, but may still be vulnerable to antigenically advanced subvariants such as KP.3.1.1 and XEC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Discovery
Cell Discovery Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
24.20
自引率
0.60%
发文量
120
审稿时长
20 weeks
期刊介绍: Cell Discovery is a cutting-edge, open access journal published by Springer Nature in collaboration with the Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences (CAS). Our aim is to provide a dynamic and accessible platform for scientists to showcase their exceptional original research. Cell Discovery covers a wide range of topics within the fields of molecular and cell biology. We eagerly publish results of great significance and that are of broad interest to the scientific community. With an international authorship and a focus on basic life sciences, our journal is a valued member of Springer Nature's prestigious Molecular Cell Biology journals. In summary, Cell Discovery offers a fresh approach to scholarly publishing, enabling scientists from around the world to share their exceptional findings in molecular and cell biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信