Yin Zhang, Lin Tang, Shengyao Zhi, Bosu Hu, Zhixiang Zuo, Jian Ren, Yubin Xie, Xiaotong Luo
{"title":"M6Allele:用于检测等位基因特异性RNA n6 -甲基腺苷修饰的工具包。","authors":"Yin Zhang, Lin Tang, Shengyao Zhi, Bosu Hu, Zhixiang Zuo, Jian Ren, Yubin Xie, Xiaotong Luo","doi":"10.1093/gigascience/giaf040","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Allelic gene-specific regulatory events are crucial mechanisms in organisms, pivotal to many fundamental biological processes such as embryonic development and chromosome inactivation. Allelic gene imbalance manifests at both RNA expression and epigenetic levels. Recent research has unveiled allelic-specific regulation of RNA N6-methyladenosine (m6A), emphasizing the need for its precise identification. However, prevailing approaches primarily focus on screening allele-specific genetic variations associated with m6A, but not truly identify allelic m6A events. Therefore, the construction of a novel algorithm dedicated to identifying allele-specific m6A (ASm6A) signals is still necessary for comprehensively understanding the regulatory mechanism of ASm6A.</p><p><strong>Findings: </strong>To address this limitation, we have developed a meta-analysis approach using hierarchical Bayesian models to accurately detect ASm6A events at the peak level from MeRIP-seq data. For user convenience, we introduce a unified analysis pipeline named M6Allele, streamlining the assessment of significant ASm6A across single and paired samples. Applying M6Allele to MeRIP-seq data analysis of pulmonary fibrosis and lung adenocarcinoma reveals enrichment of ASm6A events in key regulatory genes associated with these diseases, suggesting their potential involvement in disease regulation.</p><p><strong>Conclusions: </strong>Our effort provides a method for precisely identifying ASm6A events at the peak level, elucidates the interplay of m6A with human health and disease genetics, and paves a new visual angle for disease research. The M6Allele software is freely available at https://github.com/RenLabBioinformatics/M6Allele under the MIT license.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"14 ","pages":""},"PeriodicalIF":11.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12087454/pdf/","citationCount":"0","resultStr":"{\"title\":\"M6Allele: a toolkit for detection of allele-specific RNA N6-methyladenosine modifications.\",\"authors\":\"Yin Zhang, Lin Tang, Shengyao Zhi, Bosu Hu, Zhixiang Zuo, Jian Ren, Yubin Xie, Xiaotong Luo\",\"doi\":\"10.1093/gigascience/giaf040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Allelic gene-specific regulatory events are crucial mechanisms in organisms, pivotal to many fundamental biological processes such as embryonic development and chromosome inactivation. Allelic gene imbalance manifests at both RNA expression and epigenetic levels. Recent research has unveiled allelic-specific regulation of RNA N6-methyladenosine (m6A), emphasizing the need for its precise identification. However, prevailing approaches primarily focus on screening allele-specific genetic variations associated with m6A, but not truly identify allelic m6A events. Therefore, the construction of a novel algorithm dedicated to identifying allele-specific m6A (ASm6A) signals is still necessary for comprehensively understanding the regulatory mechanism of ASm6A.</p><p><strong>Findings: </strong>To address this limitation, we have developed a meta-analysis approach using hierarchical Bayesian models to accurately detect ASm6A events at the peak level from MeRIP-seq data. For user convenience, we introduce a unified analysis pipeline named M6Allele, streamlining the assessment of significant ASm6A across single and paired samples. Applying M6Allele to MeRIP-seq data analysis of pulmonary fibrosis and lung adenocarcinoma reveals enrichment of ASm6A events in key regulatory genes associated with these diseases, suggesting their potential involvement in disease regulation.</p><p><strong>Conclusions: </strong>Our effort provides a method for precisely identifying ASm6A events at the peak level, elucidates the interplay of m6A with human health and disease genetics, and paves a new visual angle for disease research. The M6Allele software is freely available at https://github.com/RenLabBioinformatics/M6Allele under the MIT license.</p>\",\"PeriodicalId\":12581,\"journal\":{\"name\":\"GigaScience\",\"volume\":\"14 \",\"pages\":\"\"},\"PeriodicalIF\":11.8000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12087454/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GigaScience\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/gigascience/giaf040\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaScience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gigascience/giaf040","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
M6Allele: a toolkit for detection of allele-specific RNA N6-methyladenosine modifications.
Background: Allelic gene-specific regulatory events are crucial mechanisms in organisms, pivotal to many fundamental biological processes such as embryonic development and chromosome inactivation. Allelic gene imbalance manifests at both RNA expression and epigenetic levels. Recent research has unveiled allelic-specific regulation of RNA N6-methyladenosine (m6A), emphasizing the need for its precise identification. However, prevailing approaches primarily focus on screening allele-specific genetic variations associated with m6A, but not truly identify allelic m6A events. Therefore, the construction of a novel algorithm dedicated to identifying allele-specific m6A (ASm6A) signals is still necessary for comprehensively understanding the regulatory mechanism of ASm6A.
Findings: To address this limitation, we have developed a meta-analysis approach using hierarchical Bayesian models to accurately detect ASm6A events at the peak level from MeRIP-seq data. For user convenience, we introduce a unified analysis pipeline named M6Allele, streamlining the assessment of significant ASm6A across single and paired samples. Applying M6Allele to MeRIP-seq data analysis of pulmonary fibrosis and lung adenocarcinoma reveals enrichment of ASm6A events in key regulatory genes associated with these diseases, suggesting their potential involvement in disease regulation.
Conclusions: Our effort provides a method for precisely identifying ASm6A events at the peak level, elucidates the interplay of m6A with human health and disease genetics, and paves a new visual angle for disease research. The M6Allele software is freely available at https://github.com/RenLabBioinformatics/M6Allele under the MIT license.
期刊介绍:
GigaScience seeks to transform data dissemination and utilization in the life and biomedical sciences. As an online open-access open-data journal, it specializes in publishing "big-data" studies encompassing various fields. Its scope includes not only "omic" type data and the fields of high-throughput biology currently serviced by large public repositories, but also the growing range of more difficult-to-access data, such as imaging, neuroscience, ecology, cohort data, systems biology and other new types of large-scale shareable data.