Xiaohua Yang, Tianzhang Kou, Hongmiao Wang, Ji Zhu, Zheng-Jiang Zhu, Yuping Cai
{"title":"s -腺苷蛋氨酸代谢影响CD8+ T细胞在结直肠癌中的功能","authors":"Xiaohua Yang, Tianzhang Kou, Hongmiao Wang, Ji Zhu, Zheng-Jiang Zhu, Yuping Cai","doi":"10.1186/s40170-025-00394-2","DOIUrl":null,"url":null,"abstract":"<p><p>Metabolite nutrients within the tumor microenvironment shape both tumor progression and immune cell functionality. It remains elusive how the metabolic interaction between T cells and tumor cells results in different anti-cancer immunotherapeutic responses. Here, we use untargeted metabolomics to investigate the metabolic heterogeneity in patients with colorectal cancer (CRC). Our analysis reveals enhanced S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) metabolism in microsatellite stable (MSS) CRC, a subtype known for its resistance to immunotherapy. Functional studies reveal that SAM and SAH enhance the initial activation and effector functions of CD8<sup>+</sup> T cells. Instead, cancer cells outcompete CD8<sup>+</sup> T cells for SAM and SAH availability to impair T cell survival. In vivo, SAM supplementation promotes T cell proliferation and reduces exhaustion of the tumor-infiltrating CD8<sup>+</sup> T cells, thus suppressing tumor growth in tumor-bearing mice. This study uncovers the metabolic crosstalk between T cells and tumor cells, which drives the development of tumors resistant to immunotherapy.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"13 1","pages":"23"},"PeriodicalIF":6.0000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12090577/pdf/","citationCount":"0","resultStr":"{\"title\":\"S-adenosylmethionine metabolism shapes CD8<sup>+</sup> T cell functions in colorectal cancer.\",\"authors\":\"Xiaohua Yang, Tianzhang Kou, Hongmiao Wang, Ji Zhu, Zheng-Jiang Zhu, Yuping Cai\",\"doi\":\"10.1186/s40170-025-00394-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metabolite nutrients within the tumor microenvironment shape both tumor progression and immune cell functionality. It remains elusive how the metabolic interaction between T cells and tumor cells results in different anti-cancer immunotherapeutic responses. Here, we use untargeted metabolomics to investigate the metabolic heterogeneity in patients with colorectal cancer (CRC). Our analysis reveals enhanced S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) metabolism in microsatellite stable (MSS) CRC, a subtype known for its resistance to immunotherapy. Functional studies reveal that SAM and SAH enhance the initial activation and effector functions of CD8<sup>+</sup> T cells. Instead, cancer cells outcompete CD8<sup>+</sup> T cells for SAM and SAH availability to impair T cell survival. In vivo, SAM supplementation promotes T cell proliferation and reduces exhaustion of the tumor-infiltrating CD8<sup>+</sup> T cells, thus suppressing tumor growth in tumor-bearing mice. This study uncovers the metabolic crosstalk between T cells and tumor cells, which drives the development of tumors resistant to immunotherapy.</p>\",\"PeriodicalId\":9418,\"journal\":{\"name\":\"Cancer & Metabolism\",\"volume\":\"13 1\",\"pages\":\"23\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12090577/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer & Metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40170-025-00394-2\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer & Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40170-025-00394-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
S-adenosylmethionine metabolism shapes CD8+ T cell functions in colorectal cancer.
Metabolite nutrients within the tumor microenvironment shape both tumor progression and immune cell functionality. It remains elusive how the metabolic interaction between T cells and tumor cells results in different anti-cancer immunotherapeutic responses. Here, we use untargeted metabolomics to investigate the metabolic heterogeneity in patients with colorectal cancer (CRC). Our analysis reveals enhanced S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) metabolism in microsatellite stable (MSS) CRC, a subtype known for its resistance to immunotherapy. Functional studies reveal that SAM and SAH enhance the initial activation and effector functions of CD8+ T cells. Instead, cancer cells outcompete CD8+ T cells for SAM and SAH availability to impair T cell survival. In vivo, SAM supplementation promotes T cell proliferation and reduces exhaustion of the tumor-infiltrating CD8+ T cells, thus suppressing tumor growth in tumor-bearing mice. This study uncovers the metabolic crosstalk between T cells and tumor cells, which drives the development of tumors resistant to immunotherapy.
期刊介绍:
Cancer & Metabolism welcomes studies on all aspects of the relationship between cancer and metabolism, including: -Molecular biology and genetics of cancer metabolism -Whole-body metabolism, including diabetes and obesity, in relation to cancer -Metabolomics in relation to cancer; -Metabolism-based imaging -Preclinical and clinical studies of metabolism-related cancer therapies.