Hui Li, Chang-Tao Zhang, Hua-Guo Shao, Lin Pan, Zhongyun Li, Min Wang, Shi-Hao Xu
{"title":"基于多模态超声和临床特征的乳腺癌分子亚型预测模型。","authors":"Hui Li, Chang-Tao Zhang, Hua-Guo Shao, Lin Pan, Zhongyun Li, Min Wang, Shi-Hao Xu","doi":"10.1186/s12885-025-14233-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aims: </strong>Breast cancer classify into four molecular subtypes: Luminal A, Luminal B, HER2-overexpressing (HER2), and triple-negative (TNBC) based on immunohistochemical assessments. The multimodal ultrasound features correlate with biological biomarkers and molecular subtypes, facilitating personalized, precision-guided treatment strategies for patients. In this study, we aimed to explore the differences of multimodal ultrasound features generated from conventional ultrasound (CUS), shear wave elastography (SWE) and contrast-enhanced ultrasound (CEUS) between molecular subtypes of breast cancer, investigate the value of prediction model of breast cancer molecular subtypes based on multimodal ultrasound and clinical features.</p><p><strong>Methods: </strong>Breast cancer patients who visited our hospital from January 2023 to June 2024 and underwent CUS, SWE and CEUS were selected, according to inclusion criteria. Based on the selected effective feature subset, binary prediction models of features of CUS, features of SWE, features of CEUS and full parameters were constructed separately for the four breast cancer subtypes Luminal A, Luminal B, HER2, and TNBC, respectively.</p><p><strong>Results: </strong>There were ten parameters that showed significant differences between molecular subtypes of breast cancer, including BI-RADS, palpable mass, aspect ratio, maximum diameter, calcification, heterogeneous echogenicity, irregular shape, standard deviation elastic modulus value of lesion, time of appearance, peak intensity. Full parameter models had highest area under the curve (AUC) values in every test set. In aggregate, judging from the values of accuracy, precision, recall, F1 score and AUC, models used features selected from full parameters showed better prediction results than those used features selected from CUS, SWE and CEUS alone (AUC: Luminal A, 0.81; Luminal B, 0.74; HER2, 0.89; TNBC, 0.78).</p><p><strong>Conclusions: </strong>In conclusion, multimodal ultrasound features had differences between molecular subtypes of breast cancer and models based on multimodal ultrasound data facilitated the prediction of molecular subtypes.</p>","PeriodicalId":9131,"journal":{"name":"BMC Cancer","volume":"25 1","pages":"886"},"PeriodicalIF":3.4000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12087075/pdf/","citationCount":"0","resultStr":"{\"title\":\"Prediction models of breast cancer molecular subtypes based on multimodal ultrasound and clinical features.\",\"authors\":\"Hui Li, Chang-Tao Zhang, Hua-Guo Shao, Lin Pan, Zhongyun Li, Min Wang, Shi-Hao Xu\",\"doi\":\"10.1186/s12885-025-14233-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and aims: </strong>Breast cancer classify into four molecular subtypes: Luminal A, Luminal B, HER2-overexpressing (HER2), and triple-negative (TNBC) based on immunohistochemical assessments. The multimodal ultrasound features correlate with biological biomarkers and molecular subtypes, facilitating personalized, precision-guided treatment strategies for patients. In this study, we aimed to explore the differences of multimodal ultrasound features generated from conventional ultrasound (CUS), shear wave elastography (SWE) and contrast-enhanced ultrasound (CEUS) between molecular subtypes of breast cancer, investigate the value of prediction model of breast cancer molecular subtypes based on multimodal ultrasound and clinical features.</p><p><strong>Methods: </strong>Breast cancer patients who visited our hospital from January 2023 to June 2024 and underwent CUS, SWE and CEUS were selected, according to inclusion criteria. Based on the selected effective feature subset, binary prediction models of features of CUS, features of SWE, features of CEUS and full parameters were constructed separately for the four breast cancer subtypes Luminal A, Luminal B, HER2, and TNBC, respectively.</p><p><strong>Results: </strong>There were ten parameters that showed significant differences between molecular subtypes of breast cancer, including BI-RADS, palpable mass, aspect ratio, maximum diameter, calcification, heterogeneous echogenicity, irregular shape, standard deviation elastic modulus value of lesion, time of appearance, peak intensity. Full parameter models had highest area under the curve (AUC) values in every test set. In aggregate, judging from the values of accuracy, precision, recall, F1 score and AUC, models used features selected from full parameters showed better prediction results than those used features selected from CUS, SWE and CEUS alone (AUC: Luminal A, 0.81; Luminal B, 0.74; HER2, 0.89; TNBC, 0.78).</p><p><strong>Conclusions: </strong>In conclusion, multimodal ultrasound features had differences between molecular subtypes of breast cancer and models based on multimodal ultrasound data facilitated the prediction of molecular subtypes.</p>\",\"PeriodicalId\":9131,\"journal\":{\"name\":\"BMC Cancer\",\"volume\":\"25 1\",\"pages\":\"886\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12087075/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12885-025-14233-6\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12885-025-14233-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
Prediction models of breast cancer molecular subtypes based on multimodal ultrasound and clinical features.
Background and aims: Breast cancer classify into four molecular subtypes: Luminal A, Luminal B, HER2-overexpressing (HER2), and triple-negative (TNBC) based on immunohistochemical assessments. The multimodal ultrasound features correlate with biological biomarkers and molecular subtypes, facilitating personalized, precision-guided treatment strategies for patients. In this study, we aimed to explore the differences of multimodal ultrasound features generated from conventional ultrasound (CUS), shear wave elastography (SWE) and contrast-enhanced ultrasound (CEUS) between molecular subtypes of breast cancer, investigate the value of prediction model of breast cancer molecular subtypes based on multimodal ultrasound and clinical features.
Methods: Breast cancer patients who visited our hospital from January 2023 to June 2024 and underwent CUS, SWE and CEUS were selected, according to inclusion criteria. Based on the selected effective feature subset, binary prediction models of features of CUS, features of SWE, features of CEUS and full parameters were constructed separately for the four breast cancer subtypes Luminal A, Luminal B, HER2, and TNBC, respectively.
Results: There were ten parameters that showed significant differences between molecular subtypes of breast cancer, including BI-RADS, palpable mass, aspect ratio, maximum diameter, calcification, heterogeneous echogenicity, irregular shape, standard deviation elastic modulus value of lesion, time of appearance, peak intensity. Full parameter models had highest area under the curve (AUC) values in every test set. In aggregate, judging from the values of accuracy, precision, recall, F1 score and AUC, models used features selected from full parameters showed better prediction results than those used features selected from CUS, SWE and CEUS alone (AUC: Luminal A, 0.81; Luminal B, 0.74; HER2, 0.89; TNBC, 0.78).
Conclusions: In conclusion, multimodal ultrasound features had differences between molecular subtypes of breast cancer and models based on multimodal ultrasound data facilitated the prediction of molecular subtypes.
期刊介绍:
BMC Cancer is an open access, peer-reviewed journal that considers articles on all aspects of cancer research, including the pathophysiology, prevention, diagnosis and treatment of cancers. The journal welcomes submissions concerning molecular and cellular biology, genetics, epidemiology, and clinical trials.