{"title":"GBSSI失活对ems诱导的小麦突变系淀粉结构和功能的影响。","authors":"Sujon Kumar, Yulong Li, Jia Zheng, Jing Liu, Qiang Xu, Yazhou Zhang, Huaping Tang, Pengfei Qi, Mei Deng, Jian Ma, Guoyue Chen, Yuming Wei, Youliang Zheng, Qiantao Jiang","doi":"10.1186/s12864-025-11630-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Starch, a major component of wheat (Triticum aestivum L.) grain, plays a crucial role in determining processing quality. Granule-bound starch synthase I (GBSSI), the enzyme primarily responsible for elongating α-1,4-glucan chains into linear amylose molecules, is a key determinant of starch quality. In this study, a mutant population of the wheat cultivar SM126, a high-quality variety form Sichuan, China, was generated using ethyl methanesulfonate (EMS) mutagenesis. This research investigates the effects of GBSSI inactivation on starch structure and functionality.</p><p><strong>Results: </strong>A waxy mutant (Wx-Abd) was identified by screening an M4 seed library with sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of grain endosperm flour. DNA sequencing revealed a single nucleotide polymorphism (SNP) in the fourth exon, causing a premature stop codon and inactivation of the Wx-Abd allele. In previous work, the Wx-abD mutant was identified in the M2 generation, and crossing the M2-31 line with the M4-6165 line produced four distinct Wx protein subunits in the SM126 background. Comparisons between the Wx-abd line and the wild-type SM126 (Wx-AbD) showed significant differences in starch properties. The Wx-abd line exhibited reduced Wx gene expression, a distinct surface depression on starch granules, and a higher proportion of B-type starch granules. Notably, it exhibited significantly lower amylose content (7.02%) compared to SM126 (22.32%), along with a reduction in total starch content. Additionally, the Wx-abd line showed a higher gelatinization temperature.</p><p><strong>Conclusion: </strong>Inactivation of GBSSI in the Wx-abd line resulted in altered starch structure, particularly a decrease in amylose content and changes in granule morphology. These findings suggest that the Wx-abd line represents a valuable genetic resource for wheat breeding programs focused on improving starch quality for food production, with its high agronomic performance making it suitable for further breeding applications.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"26 1","pages":"501"},"PeriodicalIF":3.5000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12087110/pdf/","citationCount":"0","resultStr":"{\"title\":\"The impact of GBSSI inactivation on starch structure and functionality in EMS-induced mutant lines of wheat.\",\"authors\":\"Sujon Kumar, Yulong Li, Jia Zheng, Jing Liu, Qiang Xu, Yazhou Zhang, Huaping Tang, Pengfei Qi, Mei Deng, Jian Ma, Guoyue Chen, Yuming Wei, Youliang Zheng, Qiantao Jiang\",\"doi\":\"10.1186/s12864-025-11630-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Starch, a major component of wheat (Triticum aestivum L.) grain, plays a crucial role in determining processing quality. Granule-bound starch synthase I (GBSSI), the enzyme primarily responsible for elongating α-1,4-glucan chains into linear amylose molecules, is a key determinant of starch quality. In this study, a mutant population of the wheat cultivar SM126, a high-quality variety form Sichuan, China, was generated using ethyl methanesulfonate (EMS) mutagenesis. This research investigates the effects of GBSSI inactivation on starch structure and functionality.</p><p><strong>Results: </strong>A waxy mutant (Wx-Abd) was identified by screening an M4 seed library with sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of grain endosperm flour. DNA sequencing revealed a single nucleotide polymorphism (SNP) in the fourth exon, causing a premature stop codon and inactivation of the Wx-Abd allele. In previous work, the Wx-abD mutant was identified in the M2 generation, and crossing the M2-31 line with the M4-6165 line produced four distinct Wx protein subunits in the SM126 background. Comparisons between the Wx-abd line and the wild-type SM126 (Wx-AbD) showed significant differences in starch properties. The Wx-abd line exhibited reduced Wx gene expression, a distinct surface depression on starch granules, and a higher proportion of B-type starch granules. Notably, it exhibited significantly lower amylose content (7.02%) compared to SM126 (22.32%), along with a reduction in total starch content. Additionally, the Wx-abd line showed a higher gelatinization temperature.</p><p><strong>Conclusion: </strong>Inactivation of GBSSI in the Wx-abd line resulted in altered starch structure, particularly a decrease in amylose content and changes in granule morphology. These findings suggest that the Wx-abd line represents a valuable genetic resource for wheat breeding programs focused on improving starch quality for food production, with its high agronomic performance making it suitable for further breeding applications.</p>\",\"PeriodicalId\":9030,\"journal\":{\"name\":\"BMC Genomics\",\"volume\":\"26 1\",\"pages\":\"501\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12087110/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12864-025-11630-w\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-025-11630-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
The impact of GBSSI inactivation on starch structure and functionality in EMS-induced mutant lines of wheat.
Background: Starch, a major component of wheat (Triticum aestivum L.) grain, plays a crucial role in determining processing quality. Granule-bound starch synthase I (GBSSI), the enzyme primarily responsible for elongating α-1,4-glucan chains into linear amylose molecules, is a key determinant of starch quality. In this study, a mutant population of the wheat cultivar SM126, a high-quality variety form Sichuan, China, was generated using ethyl methanesulfonate (EMS) mutagenesis. This research investigates the effects of GBSSI inactivation on starch structure and functionality.
Results: A waxy mutant (Wx-Abd) was identified by screening an M4 seed library with sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of grain endosperm flour. DNA sequencing revealed a single nucleotide polymorphism (SNP) in the fourth exon, causing a premature stop codon and inactivation of the Wx-Abd allele. In previous work, the Wx-abD mutant was identified in the M2 generation, and crossing the M2-31 line with the M4-6165 line produced four distinct Wx protein subunits in the SM126 background. Comparisons between the Wx-abd line and the wild-type SM126 (Wx-AbD) showed significant differences in starch properties. The Wx-abd line exhibited reduced Wx gene expression, a distinct surface depression on starch granules, and a higher proportion of B-type starch granules. Notably, it exhibited significantly lower amylose content (7.02%) compared to SM126 (22.32%), along with a reduction in total starch content. Additionally, the Wx-abd line showed a higher gelatinization temperature.
Conclusion: Inactivation of GBSSI in the Wx-abd line resulted in altered starch structure, particularly a decrease in amylose content and changes in granule morphology. These findings suggest that the Wx-abd line represents a valuable genetic resource for wheat breeding programs focused on improving starch quality for food production, with its high agronomic performance making it suitable for further breeding applications.
期刊介绍:
BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics.
BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.