Seung Hwan Jeon, Hyeongho Min, Gui Won Hwang, Jihun Son, Han Joo Kim, Da Wan Kim, Yeon Soo Lee, Chang Hyun Park, Cheonyang Lee, Hyoung-Min Choi, Jinseok Jang, Bo-Gyu Bok, Tae-Heon Yang, Min-Seok Kim, Changhyun Pang
{"title":"易于变形的可打印导电marangoni驱动的3D微圆顶几何形状,用于指尖弯曲的电子皮肤阵列,具有超柔软的线性触摸","authors":"Seung Hwan Jeon, Hyeongho Min, Gui Won Hwang, Jihun Son, Han Joo Kim, Da Wan Kim, Yeon Soo Lee, Chang Hyun Park, Cheonyang Lee, Hyoung-Min Choi, Jinseok Jang, Bo-Gyu Bok, Tae-Heon Yang, Min-Seok Kim, Changhyun Pang","doi":"10.1002/inf2.70001","DOIUrl":null,"url":null,"abstract":"<p>Continuously printable electronics have the significant advantage of being efficient for fabricating conductive polymer composites; however, the precise tailoring of the 3D hierarchical morphology of conductive nanocomposites in a simple dripping step remains challenging. Here, we introduce a one-step direct printing technique to construct diverse microdome morphologies influenced by the interfacial Marangoni effect and nanoparticle interactions. Using a jet dispenser for continuous processing, we effectively fabricated a soft epidermis-like e-skin containing 64 densely arrayed pressure sensing pixels with a hierarchical dome array for enhanced linearity and ultrasensitivity. The e-skin has 36 temperature-sensing pixels in the outer layer, with a shield-shaped dome that is insensitive to pressure stimuli. Our prosthetic finger inserted with the printed sensor arrays was capable of ultragentle detection and manipulation, such as stably holding a fragile biscuit, using a soft dropper to elaborately produce water droplets and harvesting soft fruits; these activities are challenging for existing high-sensitivity tactile sensors.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"7 5","pages":""},"PeriodicalIF":22.7000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.70001","citationCount":"0","resultStr":"{\"title\":\"Easy-to-morph printable conductive Marangoni-driven 3D microdome geometries for fingertip-curved e-skin array with an ultragentle linear touch\",\"authors\":\"Seung Hwan Jeon, Hyeongho Min, Gui Won Hwang, Jihun Son, Han Joo Kim, Da Wan Kim, Yeon Soo Lee, Chang Hyun Park, Cheonyang Lee, Hyoung-Min Choi, Jinseok Jang, Bo-Gyu Bok, Tae-Heon Yang, Min-Seok Kim, Changhyun Pang\",\"doi\":\"10.1002/inf2.70001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Continuously printable electronics have the significant advantage of being efficient for fabricating conductive polymer composites; however, the precise tailoring of the 3D hierarchical morphology of conductive nanocomposites in a simple dripping step remains challenging. Here, we introduce a one-step direct printing technique to construct diverse microdome morphologies influenced by the interfacial Marangoni effect and nanoparticle interactions. Using a jet dispenser for continuous processing, we effectively fabricated a soft epidermis-like e-skin containing 64 densely arrayed pressure sensing pixels with a hierarchical dome array for enhanced linearity and ultrasensitivity. The e-skin has 36 temperature-sensing pixels in the outer layer, with a shield-shaped dome that is insensitive to pressure stimuli. Our prosthetic finger inserted with the printed sensor arrays was capable of ultragentle detection and manipulation, such as stably holding a fragile biscuit, using a soft dropper to elaborately produce water droplets and harvesting soft fruits; these activities are challenging for existing high-sensitivity tactile sensors.</p><p>\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":48538,\"journal\":{\"name\":\"Infomat\",\"volume\":\"7 5\",\"pages\":\"\"},\"PeriodicalIF\":22.7000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.70001\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infomat\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/inf2.70001\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infomat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/inf2.70001","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Easy-to-morph printable conductive Marangoni-driven 3D microdome geometries for fingertip-curved e-skin array with an ultragentle linear touch
Continuously printable electronics have the significant advantage of being efficient for fabricating conductive polymer composites; however, the precise tailoring of the 3D hierarchical morphology of conductive nanocomposites in a simple dripping step remains challenging. Here, we introduce a one-step direct printing technique to construct diverse microdome morphologies influenced by the interfacial Marangoni effect and nanoparticle interactions. Using a jet dispenser for continuous processing, we effectively fabricated a soft epidermis-like e-skin containing 64 densely arrayed pressure sensing pixels with a hierarchical dome array for enhanced linearity and ultrasensitivity. The e-skin has 36 temperature-sensing pixels in the outer layer, with a shield-shaped dome that is insensitive to pressure stimuli. Our prosthetic finger inserted with the printed sensor arrays was capable of ultragentle detection and manipulation, such as stably holding a fragile biscuit, using a soft dropper to elaborately produce water droplets and harvesting soft fruits; these activities are challenging for existing high-sensitivity tactile sensors.
期刊介绍:
InfoMat, an interdisciplinary and open-access journal, caters to the growing scientific interest in novel materials with unique electrical, optical, and magnetic properties, focusing on their applications in the rapid advancement of information technology. The journal serves as a high-quality platform for researchers across diverse scientific areas to share their findings, critical opinions, and foster collaboration between the materials science and information technology communities.