{"title":"PartConverter:一个面向部分的点云转换框架","authors":"Sheng-Yun Zeng, Tyng-Yeu Liang","doi":"10.1049/ipr2.70104","DOIUrl":null,"url":null,"abstract":"<p>With generative AI technologies advancing rapidly, the capabilities for 3D model generation and transformation are expanding across industries like manufacturing, healthcare, and virtual reality. However, existing methods based on generative adversarial networks (GANs), autoencoders, or transformers still have notable limitations. They primarily generate entire objects without providing flexibility for independent part transformation or precise control over model components. These constraints pose challenges for applications requiring complex object manipulation and fine-grained adjustments. To overcome these limitations, we propose PartConverter, a novel part-oriented point cloud transformation framework emphasizing flexibility and precision in 3D model transformations. PartConverter leverages attention mechanisms and autoencoders to capture crucial details within each part while modeling the relationships between components, thereby enabling highly customizable, part-wise transformations that maintain overall consistency. Additionally, our part assembler ensures that transformed parts align coherently, resulting in a consistent and realistic final 3D shape. This framework significantly enhances control over detailed part modeling, increasing the flexibility and efficiency of 3D model transformation workflows.</p>","PeriodicalId":56303,"journal":{"name":"IET Image Processing","volume":"19 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ipr2.70104","citationCount":"0","resultStr":"{\"title\":\"PartConverter: A Part-Oriented Transformation Framework for Point Clouds\",\"authors\":\"Sheng-Yun Zeng, Tyng-Yeu Liang\",\"doi\":\"10.1049/ipr2.70104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With generative AI technologies advancing rapidly, the capabilities for 3D model generation and transformation are expanding across industries like manufacturing, healthcare, and virtual reality. However, existing methods based on generative adversarial networks (GANs), autoencoders, or transformers still have notable limitations. They primarily generate entire objects without providing flexibility for independent part transformation or precise control over model components. These constraints pose challenges for applications requiring complex object manipulation and fine-grained adjustments. To overcome these limitations, we propose PartConverter, a novel part-oriented point cloud transformation framework emphasizing flexibility and precision in 3D model transformations. PartConverter leverages attention mechanisms and autoencoders to capture crucial details within each part while modeling the relationships between components, thereby enabling highly customizable, part-wise transformations that maintain overall consistency. Additionally, our part assembler ensures that transformed parts align coherently, resulting in a consistent and realistic final 3D shape. This framework significantly enhances control over detailed part modeling, increasing the flexibility and efficiency of 3D model transformation workflows.</p>\",\"PeriodicalId\":56303,\"journal\":{\"name\":\"IET Image Processing\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ipr2.70104\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Image Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/ipr2.70104\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Image Processing","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ipr2.70104","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
PartConverter: A Part-Oriented Transformation Framework for Point Clouds
With generative AI technologies advancing rapidly, the capabilities for 3D model generation and transformation are expanding across industries like manufacturing, healthcare, and virtual reality. However, existing methods based on generative adversarial networks (GANs), autoencoders, or transformers still have notable limitations. They primarily generate entire objects without providing flexibility for independent part transformation or precise control over model components. These constraints pose challenges for applications requiring complex object manipulation and fine-grained adjustments. To overcome these limitations, we propose PartConverter, a novel part-oriented point cloud transformation framework emphasizing flexibility and precision in 3D model transformations. PartConverter leverages attention mechanisms and autoencoders to capture crucial details within each part while modeling the relationships between components, thereby enabling highly customizable, part-wise transformations that maintain overall consistency. Additionally, our part assembler ensures that transformed parts align coherently, resulting in a consistent and realistic final 3D shape. This framework significantly enhances control over detailed part modeling, increasing the flexibility and efficiency of 3D model transformation workflows.
期刊介绍:
The IET Image Processing journal encompasses research areas related to the generation, processing and communication of visual information. The focus of the journal is the coverage of the latest research results in image and video processing, including image generation and display, enhancement and restoration, segmentation, colour and texture analysis, coding and communication, implementations and architectures as well as innovative applications.
Principal topics include:
Generation and Display - Imaging sensors and acquisition systems, illumination, sampling and scanning, quantization, colour reproduction, image rendering, display and printing systems, evaluation of image quality.
Processing and Analysis - Image enhancement, restoration, segmentation, registration, multispectral, colour and texture processing, multiresolution processing and wavelets, morphological operations, stereoscopic and 3-D processing, motion detection and estimation, video and image sequence processing.
Implementations and Architectures - Image and video processing hardware and software, design and construction, architectures and software, neural, adaptive, and fuzzy processing.
Coding and Transmission - Image and video compression and coding, compression standards, noise modelling, visual information networks, streamed video.
Retrieval and Multimedia - Storage of images and video, database design, image retrieval, video annotation and editing, mixed media incorporating visual information, multimedia systems and applications, image and video watermarking, steganography.
Applications - Innovative application of image and video processing technologies to any field, including life sciences, earth sciences, astronomy, document processing and security.
Current Special Issue Call for Papers:
Evolutionary Computation for Image Processing - https://digital-library.theiet.org/files/IET_IPR_CFP_EC.pdf
AI-Powered 3D Vision - https://digital-library.theiet.org/files/IET_IPR_CFP_AIPV.pdf
Multidisciplinary advancement of Imaging Technologies: From Medical Diagnostics and Genomics to Cognitive Machine Vision, and Artificial Intelligence - https://digital-library.theiet.org/files/IET_IPR_CFP_IST.pdf
Deep Learning for 3D Reconstruction - https://digital-library.theiet.org/files/IET_IPR_CFP_DLR.pdf