PartConverter:一个面向部分的点云转换框架

IF 2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Sheng-Yun Zeng, Tyng-Yeu Liang
{"title":"PartConverter:一个面向部分的点云转换框架","authors":"Sheng-Yun Zeng,&nbsp;Tyng-Yeu Liang","doi":"10.1049/ipr2.70104","DOIUrl":null,"url":null,"abstract":"<p>With generative AI technologies advancing rapidly, the capabilities for 3D model generation and transformation are expanding across industries like manufacturing, healthcare, and virtual reality. However, existing methods based on generative adversarial networks (GANs), autoencoders, or transformers still have notable limitations. They primarily generate entire objects without providing flexibility for independent part transformation or precise control over model components. These constraints pose challenges for applications requiring complex object manipulation and fine-grained adjustments. To overcome these limitations, we propose PartConverter, a novel part-oriented point cloud transformation framework emphasizing flexibility and precision in 3D model transformations. PartConverter leverages attention mechanisms and autoencoders to capture crucial details within each part while modeling the relationships between components, thereby enabling highly customizable, part-wise transformations that maintain overall consistency. Additionally, our part assembler ensures that transformed parts align coherently, resulting in a consistent and realistic final 3D shape. This framework significantly enhances control over detailed part modeling, increasing the flexibility and efficiency of 3D model transformation workflows.</p>","PeriodicalId":56303,"journal":{"name":"IET Image Processing","volume":"19 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ipr2.70104","citationCount":"0","resultStr":"{\"title\":\"PartConverter: A Part-Oriented Transformation Framework for Point Clouds\",\"authors\":\"Sheng-Yun Zeng,&nbsp;Tyng-Yeu Liang\",\"doi\":\"10.1049/ipr2.70104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With generative AI technologies advancing rapidly, the capabilities for 3D model generation and transformation are expanding across industries like manufacturing, healthcare, and virtual reality. However, existing methods based on generative adversarial networks (GANs), autoencoders, or transformers still have notable limitations. They primarily generate entire objects without providing flexibility for independent part transformation or precise control over model components. These constraints pose challenges for applications requiring complex object manipulation and fine-grained adjustments. To overcome these limitations, we propose PartConverter, a novel part-oriented point cloud transformation framework emphasizing flexibility and precision in 3D model transformations. PartConverter leverages attention mechanisms and autoencoders to capture crucial details within each part while modeling the relationships between components, thereby enabling highly customizable, part-wise transformations that maintain overall consistency. Additionally, our part assembler ensures that transformed parts align coherently, resulting in a consistent and realistic final 3D shape. This framework significantly enhances control over detailed part modeling, increasing the flexibility and efficiency of 3D model transformation workflows.</p>\",\"PeriodicalId\":56303,\"journal\":{\"name\":\"IET Image Processing\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ipr2.70104\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Image Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/ipr2.70104\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Image Processing","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ipr2.70104","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

随着生成式人工智能技术的快速发展,3D模型生成和转换的能力正在制造业、医疗保健和虚拟现实等行业扩展。然而,现有的基于生成对抗网络(GANs)、自动编码器或变压器的方法仍然有明显的局限性。它们主要生成整个对象,而不提供独立部件转换的灵活性或对模型组件的精确控制。这些约束对需要复杂对象操作和细粒度调整的应用程序提出了挑战。为了克服这些限制,我们提出了一种新的面向部件的点云转换框架PartConverter,它强调了3D模型转换的灵活性和准确性。PartConverter利用注意机制和自动编码器,在对组件之间的关系进行建模时,捕捉每个部分中的关键细节,从而支持高度可定制的、部分明智的转换,从而保持整体的一致性。此外,我们的零件组装器确保转换后的零件一致对齐,从而产生一致和逼真的最终3D形状。该框架显著增强了对详细零件建模的控制,提高了3D模型转换工作流的灵活性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PartConverter: A Part-Oriented Transformation Framework for Point Clouds

With generative AI technologies advancing rapidly, the capabilities for 3D model generation and transformation are expanding across industries like manufacturing, healthcare, and virtual reality. However, existing methods based on generative adversarial networks (GANs), autoencoders, or transformers still have notable limitations. They primarily generate entire objects without providing flexibility for independent part transformation or precise control over model components. These constraints pose challenges for applications requiring complex object manipulation and fine-grained adjustments. To overcome these limitations, we propose PartConverter, a novel part-oriented point cloud transformation framework emphasizing flexibility and precision in 3D model transformations. PartConverter leverages attention mechanisms and autoencoders to capture crucial details within each part while modeling the relationships between components, thereby enabling highly customizable, part-wise transformations that maintain overall consistency. Additionally, our part assembler ensures that transformed parts align coherently, resulting in a consistent and realistic final 3D shape. This framework significantly enhances control over detailed part modeling, increasing the flexibility and efficiency of 3D model transformation workflows.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Image Processing
IET Image Processing 工程技术-工程:电子与电气
CiteScore
5.40
自引率
8.70%
发文量
282
审稿时长
6 months
期刊介绍: The IET Image Processing journal encompasses research areas related to the generation, processing and communication of visual information. The focus of the journal is the coverage of the latest research results in image and video processing, including image generation and display, enhancement and restoration, segmentation, colour and texture analysis, coding and communication, implementations and architectures as well as innovative applications. Principal topics include: Generation and Display - Imaging sensors and acquisition systems, illumination, sampling and scanning, quantization, colour reproduction, image rendering, display and printing systems, evaluation of image quality. Processing and Analysis - Image enhancement, restoration, segmentation, registration, multispectral, colour and texture processing, multiresolution processing and wavelets, morphological operations, stereoscopic and 3-D processing, motion detection and estimation, video and image sequence processing. Implementations and Architectures - Image and video processing hardware and software, design and construction, architectures and software, neural, adaptive, and fuzzy processing. Coding and Transmission - Image and video compression and coding, compression standards, noise modelling, visual information networks, streamed video. Retrieval and Multimedia - Storage of images and video, database design, image retrieval, video annotation and editing, mixed media incorporating visual information, multimedia systems and applications, image and video watermarking, steganography. Applications - Innovative application of image and video processing technologies to any field, including life sciences, earth sciences, astronomy, document processing and security. Current Special Issue Call for Papers: Evolutionary Computation for Image Processing - https://digital-library.theiet.org/files/IET_IPR_CFP_EC.pdf AI-Powered 3D Vision - https://digital-library.theiet.org/files/IET_IPR_CFP_AIPV.pdf Multidisciplinary advancement of Imaging Technologies: From Medical Diagnostics and Genomics to Cognitive Machine Vision, and Artificial Intelligence - https://digital-library.theiet.org/files/IET_IPR_CFP_IST.pdf Deep Learning for 3D Reconstruction - https://digital-library.theiet.org/files/IET_IPR_CFP_DLR.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信