Md. Tofail Ahmed, Mousumi Haque, Yosuke Sugiura, Tetsuya Shimamura
求助PDF
{"title":"基于能量检测的认知无线电网络频谱感知的机器学习方法","authors":"Md. Tofail Ahmed, Mousumi Haque, Yosuke Sugiura, Tetsuya Shimamura","doi":"10.1002/tee.24261","DOIUrl":null,"url":null,"abstract":"<p>Cognitive radio is an intelligent technology for wireless communication that optimizes the use of available frequency bands. Machine learning techniques can play an important role in spectrum sensing for cognitive radio networks to meet the rising traffic demand of wireless communication systems. The reliability of spectrum sensing methods depends on the prior knowledge of the noise to set a threshold. On the other hand, the success of a machine learning model relies on both the datasets and the accuracy of its learning algorithms. In this paper, we propose a spectrum sensing method for cognitive radio based on a machine learning algorithm in the conventional energy detection technique that removes the requirement to calculate the threshold. Initially, we introduce a method to build the dataset using the general concept of spectrum sensing based on the energy detection technique. The Naive Bayes supervised machine learning classification algorithm is implemented on the generated dataset for training, validation, and testing to sense the available spectrum. The proposed method is evaluated and tested using performance metrics such as confusion matrix, accuracy, precision, recall, F1 score, probability of detection, and probability of false alarm. In the simulation, the quadrature phase-shift keying (QPSK) modulation scheme over the additive white Gaussian noise (AWGN) channel is considered. The experimental outcomes of the proposed method provide satisfactory and acceptable performance for spectrum sensing in cognitive radio networks. © 2025 Institute of Electrical Engineers of Japan and Wiley Periodicals LLC.</p>","PeriodicalId":13435,"journal":{"name":"IEEJ Transactions on Electrical and Electronic Engineering","volume":"20 6","pages":"910-919"},"PeriodicalIF":1.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Approach to Energy Detection Based Spectrum Sensing for Cognitive Radio Networks\",\"authors\":\"Md. Tofail Ahmed, Mousumi Haque, Yosuke Sugiura, Tetsuya Shimamura\",\"doi\":\"10.1002/tee.24261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cognitive radio is an intelligent technology for wireless communication that optimizes the use of available frequency bands. Machine learning techniques can play an important role in spectrum sensing for cognitive radio networks to meet the rising traffic demand of wireless communication systems. The reliability of spectrum sensing methods depends on the prior knowledge of the noise to set a threshold. On the other hand, the success of a machine learning model relies on both the datasets and the accuracy of its learning algorithms. In this paper, we propose a spectrum sensing method for cognitive radio based on a machine learning algorithm in the conventional energy detection technique that removes the requirement to calculate the threshold. Initially, we introduce a method to build the dataset using the general concept of spectrum sensing based on the energy detection technique. The Naive Bayes supervised machine learning classification algorithm is implemented on the generated dataset for training, validation, and testing to sense the available spectrum. The proposed method is evaluated and tested using performance metrics such as confusion matrix, accuracy, precision, recall, F1 score, probability of detection, and probability of false alarm. In the simulation, the quadrature phase-shift keying (QPSK) modulation scheme over the additive white Gaussian noise (AWGN) channel is considered. The experimental outcomes of the proposed method provide satisfactory and acceptable performance for spectrum sensing in cognitive radio networks. © 2025 Institute of Electrical Engineers of Japan and Wiley Periodicals LLC.</p>\",\"PeriodicalId\":13435,\"journal\":{\"name\":\"IEEJ Transactions on Electrical and Electronic Engineering\",\"volume\":\"20 6\",\"pages\":\"910-919\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEJ Transactions on Electrical and Electronic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/tee.24261\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEJ Transactions on Electrical and Electronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/tee.24261","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
引用
批量引用