Jinrui Chen, Mingfei Xiao, Zesheng Chen, Sibghah Khan, Saptarsi Ghosh, Nasiruddin Macadam, Zhuo Chen, Binghan Zhou, Guolin Yun, Kasia Wilk, Georgios Psaltakis, Feng Tian, Simon Fairclough, Yang Xu, Rachel Oliver, Tawfique Hasan
{"title":"在纸上喷墨打印可重构和可回收的忆阻器","authors":"Jinrui Chen, Mingfei Xiao, Zesheng Chen, Sibghah Khan, Saptarsi Ghosh, Nasiruddin Macadam, Zhuo Chen, Binghan Zhou, Guolin Yun, Kasia Wilk, Georgios Psaltakis, Feng Tian, Simon Fairclough, Yang Xu, Rachel Oliver, Tawfique Hasan","doi":"10.1002/inf2.70000","DOIUrl":null,"url":null,"abstract":"<p>Reconfigurable memristors featuring neural and synaptic functions hold great potential for neuromorphic circuits by simplifying system architecture, cutting power consumption, and boosting computational efficiency. Building upon these attributes, their additive manufacturing on sustainable substrates further offers unique advantages for future electronics, including low environmental impact. Here, exploiting the structure–property relationship of inkjet-printed MoS<sub>2</sub> nanoflake-based resistive layer, we present paper-based reconfigurable memristors. We demonstrate a sustainable process covering material exfoliation, device fabrication, and device recycling. With >90% yield from a 16 × 65 device array, our memristors demonstrate robust resistive switching, with >10<sup>5</sup> ON–OFF ratio and <0.5 V operation in non-volatile state. Through modulation of compliance current, the devices transition into a volatile state, with only 50 pW switching power consumption. These performances rival state-of-the-art metal oxide-based counterparts. We show device recyclability and stable, reconfigurable operation following disassembly, material collection and re-fabrication. We further demonstrate synaptic plasticity and neuronal leaky integrate-and-fire functionality, with disposable applications in smart packaging and simulated medical image diagnostics. Our work shows a sustainable pathway toward printable, reconfigurable neuromorphic devices, with minimal environmental footprints.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"7 5","pages":""},"PeriodicalIF":22.7000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.70000","citationCount":"0","resultStr":"{\"title\":\"Inkjet-printed reconfigurable and recyclable memristors on paper\",\"authors\":\"Jinrui Chen, Mingfei Xiao, Zesheng Chen, Sibghah Khan, Saptarsi Ghosh, Nasiruddin Macadam, Zhuo Chen, Binghan Zhou, Guolin Yun, Kasia Wilk, Georgios Psaltakis, Feng Tian, Simon Fairclough, Yang Xu, Rachel Oliver, Tawfique Hasan\",\"doi\":\"10.1002/inf2.70000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Reconfigurable memristors featuring neural and synaptic functions hold great potential for neuromorphic circuits by simplifying system architecture, cutting power consumption, and boosting computational efficiency. Building upon these attributes, their additive manufacturing on sustainable substrates further offers unique advantages for future electronics, including low environmental impact. Here, exploiting the structure–property relationship of inkjet-printed MoS<sub>2</sub> nanoflake-based resistive layer, we present paper-based reconfigurable memristors. We demonstrate a sustainable process covering material exfoliation, device fabrication, and device recycling. With >90% yield from a 16 × 65 device array, our memristors demonstrate robust resistive switching, with >10<sup>5</sup> ON–OFF ratio and <0.5 V operation in non-volatile state. Through modulation of compliance current, the devices transition into a volatile state, with only 50 pW switching power consumption. These performances rival state-of-the-art metal oxide-based counterparts. We show device recyclability and stable, reconfigurable operation following disassembly, material collection and re-fabrication. We further demonstrate synaptic plasticity and neuronal leaky integrate-and-fire functionality, with disposable applications in smart packaging and simulated medical image diagnostics. Our work shows a sustainable pathway toward printable, reconfigurable neuromorphic devices, with minimal environmental footprints.</p><p>\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":48538,\"journal\":{\"name\":\"Infomat\",\"volume\":\"7 5\",\"pages\":\"\"},\"PeriodicalIF\":22.7000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.70000\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infomat\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/inf2.70000\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infomat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/inf2.70000","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Inkjet-printed reconfigurable and recyclable memristors on paper
Reconfigurable memristors featuring neural and synaptic functions hold great potential for neuromorphic circuits by simplifying system architecture, cutting power consumption, and boosting computational efficiency. Building upon these attributes, their additive manufacturing on sustainable substrates further offers unique advantages for future electronics, including low environmental impact. Here, exploiting the structure–property relationship of inkjet-printed MoS2 nanoflake-based resistive layer, we present paper-based reconfigurable memristors. We demonstrate a sustainable process covering material exfoliation, device fabrication, and device recycling. With >90% yield from a 16 × 65 device array, our memristors demonstrate robust resistive switching, with >105 ON–OFF ratio and <0.5 V operation in non-volatile state. Through modulation of compliance current, the devices transition into a volatile state, with only 50 pW switching power consumption. These performances rival state-of-the-art metal oxide-based counterparts. We show device recyclability and stable, reconfigurable operation following disassembly, material collection and re-fabrication. We further demonstrate synaptic plasticity and neuronal leaky integrate-and-fire functionality, with disposable applications in smart packaging and simulated medical image diagnostics. Our work shows a sustainable pathway toward printable, reconfigurable neuromorphic devices, with minimal environmental footprints.
期刊介绍:
InfoMat, an interdisciplinary and open-access journal, caters to the growing scientific interest in novel materials with unique electrical, optical, and magnetic properties, focusing on their applications in the rapid advancement of information technology. The journal serves as a high-quality platform for researchers across diverse scientific areas to share their findings, critical opinions, and foster collaboration between the materials science and information technology communities.