{"title":"可压缩边界层湍流转捩的涡解析模拟与稳定性分析","authors":"Jiseop Lim, Minjae Jeong, Minwoo Kim, Solkeun Jee","doi":"10.1007/s10494-024-00597-5","DOIUrl":null,"url":null,"abstract":"<div><p>An efficient and high-fidelity approach is proposed for laminar-to-turbulent transition in compressible boundary layer flows. The proposed method combines eddy-resolving simulations, such as direct-numerical simulation (DNS) and large-eddy simulation (LES), with stability analysis. The combined approach provides (1) high fidelity for simulating transitional flow and (2) cost efficiency for capturing major instabilities in the pre-turbulent region. Coupling between stability analysis and eddy-resolving simulation is pursued via unsteady inlet condition for eddy-resolving simulation; instability modes from stability analysis are introduced at the inlet with the undisturbed laminar solution. The feasibility of the coupled framework is assessed for turbulent transition in both supersonic and hypersonic boundary layer flows because this framework has been rarely used in such high-speed flows. Detailed flow features associated with the transition are well captured, including the growth of instability modes in the pre-turbulent regime and the skin friction in the overall transitional flows. This study demonstrates that the proposed approach provides high fidelity for transitional boundary layers with a fraction of the computational cost of a full-scale DNS computation. It is recognized that artificial dissipation needs to be adequately controlled inside transitional boundary layer, particularly for the hypersonic case, because a common shock sensor is activated unexpectedly in the viscous boundary layer. A modified shock sensor is investigated in the current study of hypersonic boundary layer.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"115 Simulation and Measurements","pages":"79 - 104"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eddy-Resolving Simulation Coupled with Stability Analysis for Turbulent Transition in Compressible Boundary Layer\",\"authors\":\"Jiseop Lim, Minjae Jeong, Minwoo Kim, Solkeun Jee\",\"doi\":\"10.1007/s10494-024-00597-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An efficient and high-fidelity approach is proposed for laminar-to-turbulent transition in compressible boundary layer flows. The proposed method combines eddy-resolving simulations, such as direct-numerical simulation (DNS) and large-eddy simulation (LES), with stability analysis. The combined approach provides (1) high fidelity for simulating transitional flow and (2) cost efficiency for capturing major instabilities in the pre-turbulent region. Coupling between stability analysis and eddy-resolving simulation is pursued via unsteady inlet condition for eddy-resolving simulation; instability modes from stability analysis are introduced at the inlet with the undisturbed laminar solution. The feasibility of the coupled framework is assessed for turbulent transition in both supersonic and hypersonic boundary layer flows because this framework has been rarely used in such high-speed flows. Detailed flow features associated with the transition are well captured, including the growth of instability modes in the pre-turbulent regime and the skin friction in the overall transitional flows. This study demonstrates that the proposed approach provides high fidelity for transitional boundary layers with a fraction of the computational cost of a full-scale DNS computation. It is recognized that artificial dissipation needs to be adequately controlled inside transitional boundary layer, particularly for the hypersonic case, because a common shock sensor is activated unexpectedly in the viscous boundary layer. A modified shock sensor is investigated in the current study of hypersonic boundary layer.</p></div>\",\"PeriodicalId\":559,\"journal\":{\"name\":\"Flow, Turbulence and Combustion\",\"volume\":\"115 Simulation and Measurements\",\"pages\":\"79 - 104\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flow, Turbulence and Combustion\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10494-024-00597-5\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10494-024-00597-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Eddy-Resolving Simulation Coupled with Stability Analysis for Turbulent Transition in Compressible Boundary Layer
An efficient and high-fidelity approach is proposed for laminar-to-turbulent transition in compressible boundary layer flows. The proposed method combines eddy-resolving simulations, such as direct-numerical simulation (DNS) and large-eddy simulation (LES), with stability analysis. The combined approach provides (1) high fidelity for simulating transitional flow and (2) cost efficiency for capturing major instabilities in the pre-turbulent region. Coupling between stability analysis and eddy-resolving simulation is pursued via unsteady inlet condition for eddy-resolving simulation; instability modes from stability analysis are introduced at the inlet with the undisturbed laminar solution. The feasibility of the coupled framework is assessed for turbulent transition in both supersonic and hypersonic boundary layer flows because this framework has been rarely used in such high-speed flows. Detailed flow features associated with the transition are well captured, including the growth of instability modes in the pre-turbulent regime and the skin friction in the overall transitional flows. This study demonstrates that the proposed approach provides high fidelity for transitional boundary layers with a fraction of the computational cost of a full-scale DNS computation. It is recognized that artificial dissipation needs to be adequately controlled inside transitional boundary layer, particularly for the hypersonic case, because a common shock sensor is activated unexpectedly in the viscous boundary layer. A modified shock sensor is investigated in the current study of hypersonic boundary layer.
期刊介绍:
Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles.
Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.