Axel Probst, Elrawy Soliman, Silvia Probst, Matthias Orlt, Tobias Knopp
{"title":"面向工业航空应用的高效混合ranss - les","authors":"Axel Probst, Elrawy Soliman, Silvia Probst, Matthias Orlt, Tobias Knopp","doi":"10.1007/s10494-025-00645-8","DOIUrl":null,"url":null,"abstract":"<div><p>Three complementary approaches for reducing the grid-resolution requirements in hybrid RANS–LES computations, namely (a) the use of wall functions, (b) the application of locally embedded WMLES instead of global WMLES, as well as (c) local grid adaptation in LES regions, are assessed for different test cases up to an industry-relevant aeronautical flow. In this context, targeted improvements and an extension to general 3D geometries of an embedded WMLES method in a second-order accurate, unstructured compressible finite-volume solver are presented. For the wall functions and the embedded WMLES, which are applied to the NASA hump flow and the CRM-HL aircraft configuration, significant computational efficiency gains relative to corresponding reference simulations are demonstrated, while the loss of predictive accuracy compared to experiments can be limited to acceptable levels. Using a refinement indicator based on the locally resolved turbulent kinetic energy, the grid adaptation applied to the NASA hump flow and the NACA0021 at stall conditions yields partly even improved results compared to computations on globally-refined fixed grids, but the computational overhead due to the iterative refinement and averaging process was not yet included in this study. With grid-point savings ranging between 1/3 and more than 2/3 of grid points compared to respective reference meshes, all considered methods offer potential towards more efficient hybrid RANS–LES simulations of complex flows, although their accumulated potential through combination still needs to be explored.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"115 Simulation and Measurements","pages":"141 - 167"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10494-025-00645-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Towards Efficient Hybrid RANS–LES for Industrial Aeronautical Applications\",\"authors\":\"Axel Probst, Elrawy Soliman, Silvia Probst, Matthias Orlt, Tobias Knopp\",\"doi\":\"10.1007/s10494-025-00645-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Three complementary approaches for reducing the grid-resolution requirements in hybrid RANS–LES computations, namely (a) the use of wall functions, (b) the application of locally embedded WMLES instead of global WMLES, as well as (c) local grid adaptation in LES regions, are assessed for different test cases up to an industry-relevant aeronautical flow. In this context, targeted improvements and an extension to general 3D geometries of an embedded WMLES method in a second-order accurate, unstructured compressible finite-volume solver are presented. For the wall functions and the embedded WMLES, which are applied to the NASA hump flow and the CRM-HL aircraft configuration, significant computational efficiency gains relative to corresponding reference simulations are demonstrated, while the loss of predictive accuracy compared to experiments can be limited to acceptable levels. Using a refinement indicator based on the locally resolved turbulent kinetic energy, the grid adaptation applied to the NASA hump flow and the NACA0021 at stall conditions yields partly even improved results compared to computations on globally-refined fixed grids, but the computational overhead due to the iterative refinement and averaging process was not yet included in this study. With grid-point savings ranging between 1/3 and more than 2/3 of grid points compared to respective reference meshes, all considered methods offer potential towards more efficient hybrid RANS–LES simulations of complex flows, although their accumulated potential through combination still needs to be explored.</p></div>\",\"PeriodicalId\":559,\"journal\":{\"name\":\"Flow, Turbulence and Combustion\",\"volume\":\"115 Simulation and Measurements\",\"pages\":\"141 - 167\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10494-025-00645-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flow, Turbulence and Combustion\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10494-025-00645-8\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10494-025-00645-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Towards Efficient Hybrid RANS–LES for Industrial Aeronautical Applications
Three complementary approaches for reducing the grid-resolution requirements in hybrid RANS–LES computations, namely (a) the use of wall functions, (b) the application of locally embedded WMLES instead of global WMLES, as well as (c) local grid adaptation in LES regions, are assessed for different test cases up to an industry-relevant aeronautical flow. In this context, targeted improvements and an extension to general 3D geometries of an embedded WMLES method in a second-order accurate, unstructured compressible finite-volume solver are presented. For the wall functions and the embedded WMLES, which are applied to the NASA hump flow and the CRM-HL aircraft configuration, significant computational efficiency gains relative to corresponding reference simulations are demonstrated, while the loss of predictive accuracy compared to experiments can be limited to acceptable levels. Using a refinement indicator based on the locally resolved turbulent kinetic energy, the grid adaptation applied to the NASA hump flow and the NACA0021 at stall conditions yields partly even improved results compared to computations on globally-refined fixed grids, but the computational overhead due to the iterative refinement and averaging process was not yet included in this study. With grid-point savings ranging between 1/3 and more than 2/3 of grid points compared to respective reference meshes, all considered methods offer potential towards more efficient hybrid RANS–LES simulations of complex flows, although their accumulated potential through combination still needs to be explored.
期刊介绍:
Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles.
Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.