Marco Artiano, Carlo De Michele, Francesco Capuano, Gennaro Coppola
{"title":"不可压缩流模拟的标准保能和保动能时间积分方法的性能研究","authors":"Marco Artiano, Carlo De Michele, Francesco Capuano, Gennaro Coppola","doi":"10.1007/s10494-024-00586-8","DOIUrl":null,"url":null,"abstract":"<div><p>The effects of kinetic-energy preservation errors due to Runge–Kutta (RK) temporal integrators have been analyzed for the case of large-eddy simulations of incompressible turbulent channel flow. Simulations have been run using the open-source solver Xcompact3D with an implicit spectral vanishing viscosity model and a variety of temporal Runge–Kutta integrators. Explicit <i>pseudo-symplectic</i> schemes, with improved energy preservation properties, have been compared to standard RK methods. The results show a marked decrease in the temporal error for higher-order pseudo-symplectic methods; on the other hand, an analysis of the energy spectra indicates that the dissipation introduced by the commonly used three-stage RK scheme can lead to significant distortion of the energy distribution within the inertial range. A cost-vs-accuracy analysis suggests that pseudo-symplectic schemes could be used to attain results comparable to traditional methods at a reduced computational cost.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"115 Simulation and Measurements","pages":"389 - 403"},"PeriodicalIF":2.0000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Performances of Standard and Kinetic Energy Preserving Time-Integration Methods for Incompressible-Flow Simulations\",\"authors\":\"Marco Artiano, Carlo De Michele, Francesco Capuano, Gennaro Coppola\",\"doi\":\"10.1007/s10494-024-00586-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The effects of kinetic-energy preservation errors due to Runge–Kutta (RK) temporal integrators have been analyzed for the case of large-eddy simulations of incompressible turbulent channel flow. Simulations have been run using the open-source solver Xcompact3D with an implicit spectral vanishing viscosity model and a variety of temporal Runge–Kutta integrators. Explicit <i>pseudo-symplectic</i> schemes, with improved energy preservation properties, have been compared to standard RK methods. The results show a marked decrease in the temporal error for higher-order pseudo-symplectic methods; on the other hand, an analysis of the energy spectra indicates that the dissipation introduced by the commonly used three-stage RK scheme can lead to significant distortion of the energy distribution within the inertial range. A cost-vs-accuracy analysis suggests that pseudo-symplectic schemes could be used to attain results comparable to traditional methods at a reduced computational cost.</p></div>\",\"PeriodicalId\":559,\"journal\":{\"name\":\"Flow, Turbulence and Combustion\",\"volume\":\"115 Simulation and Measurements\",\"pages\":\"389 - 403\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flow, Turbulence and Combustion\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10494-024-00586-8\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10494-024-00586-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
On the Performances of Standard and Kinetic Energy Preserving Time-Integration Methods for Incompressible-Flow Simulations
The effects of kinetic-energy preservation errors due to Runge–Kutta (RK) temporal integrators have been analyzed for the case of large-eddy simulations of incompressible turbulent channel flow. Simulations have been run using the open-source solver Xcompact3D with an implicit spectral vanishing viscosity model and a variety of temporal Runge–Kutta integrators. Explicit pseudo-symplectic schemes, with improved energy preservation properties, have been compared to standard RK methods. The results show a marked decrease in the temporal error for higher-order pseudo-symplectic methods; on the other hand, an analysis of the energy spectra indicates that the dissipation introduced by the commonly used three-stage RK scheme can lead to significant distortion of the energy distribution within the inertial range. A cost-vs-accuracy analysis suggests that pseudo-symplectic schemes could be used to attain results comparable to traditional methods at a reduced computational cost.
期刊介绍:
Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles.
Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.