正弯曲稳定孤子的降维

IF 0.6 3区 数学 Q3 MATHEMATICS
Pak-Yeung Chan, Zilu Ma, Yongjia Zhang
{"title":"正弯曲稳定孤子的降维","authors":"Pak-Yeung Chan,&nbsp;Zilu Ma,&nbsp;Yongjia Zhang","doi":"10.1007/s10455-025-10001-8","DOIUrl":null,"url":null,"abstract":"<div><p>We consider noncollapsed steady gradient Ricci solitons with nonnegative sectional curvature. We show that such solitons always dimension reduce at infinity. This generalizes an earlier result in [19] to higher dimensions. In dimension four, we classify possible reductions at infinity, which lays foundation for possible classifications of steady solitons. Moreover, we show that any tangent flow at infinity of a general noncollapsed steady soliton must split off a line. This generalizes an earlier result in [7] to higher dimensions. While this article is under preparation, we realized that part of our main results are proved independently in a recent post [42] under different assumptions.</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":"67 4","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dimension reduction for positively curved steady solitons\",\"authors\":\"Pak-Yeung Chan,&nbsp;Zilu Ma,&nbsp;Yongjia Zhang\",\"doi\":\"10.1007/s10455-025-10001-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider noncollapsed steady gradient Ricci solitons with nonnegative sectional curvature. We show that such solitons always dimension reduce at infinity. This generalizes an earlier result in [19] to higher dimensions. In dimension four, we classify possible reductions at infinity, which lays foundation for possible classifications of steady solitons. Moreover, we show that any tangent flow at infinity of a general noncollapsed steady soliton must split off a line. This generalizes an earlier result in [7] to higher dimensions. While this article is under preparation, we realized that part of our main results are proved independently in a recent post [42] under different assumptions.</p></div>\",\"PeriodicalId\":8268,\"journal\":{\"name\":\"Annals of Global Analysis and Geometry\",\"volume\":\"67 4\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Global Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10455-025-10001-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-025-10001-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

考虑具有非负截面曲率的非坍缩稳定梯度Ricci孤子。我们证明了这样的孤子总是在无穷远处降维。这将[19]中的早期结果推广到更高的维度。在四维中,我们对无穷远处的可能约简进行了分类,为稳定孤子的可能分类奠定了基础。此外,我们还证明了一般非坍缩稳定孤子在无穷远处的任何切线流都必须从一条直线上分离出来。这将[7]中的早期结果推广到更高的维度。在准备本文时,我们意识到我们的部分主要结果在最近的一篇文章[42]中在不同的假设下得到了独立证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dimension reduction for positively curved steady solitons

We consider noncollapsed steady gradient Ricci solitons with nonnegative sectional curvature. We show that such solitons always dimension reduce at infinity. This generalizes an earlier result in [19] to higher dimensions. In dimension four, we classify possible reductions at infinity, which lays foundation for possible classifications of steady solitons. Moreover, we show that any tangent flow at infinity of a general noncollapsed steady soliton must split off a line. This generalizes an earlier result in [7] to higher dimensions. While this article is under preparation, we realized that part of our main results are proved independently in a recent post [42] under different assumptions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
70
审稿时长
6-12 weeks
期刊介绍: This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field. The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信