J. Araújo , F. López , S. Johansson , A. Westman , M. Bodin
{"title":"电离层体积图像的高效计算和可视化,以增强非相干散射雷达数据的解释","authors":"J. Araújo , F. López , S. Johansson , A. Westman , M. Bodin","doi":"10.1016/j.acags.2025.100245","DOIUrl":null,"url":null,"abstract":"<div><div>Incoherent scatter radar (ISR) techniques provide reliable measurements for the analysis of ionospheric plasma. Recent developments in ISR technologies allow the generation of high-resolution 3D data. Examples of such technologies employ the so-called phased-array antenna systems like the AMISR systems in North America or the upcoming EISCAT_3D in the Northern Fennoscandia region. EISCAT_3D will be capable of generating the highest resolution ISR datasets that have ever been measured. We present a novel fast computational strategy for the generation of high-resolution and smooth volumetric ionospheric images that represent ISR data. Through real-time processing, our computational framework will enable a fast decision-making during the monitoring process, where the experimental parameters are adapted in real time as the radars monitor specific phenomena. Real-time monitoring would allow the radar beams to be conveniently pointed at regions of interest and would therefore increase the science impact. We describe our strategy, which implements a flexible mesh generator along with an efficient interpolator specialized for ISR technologies. The proposed strategy is generic in the sense that it can be applied to a large variety of data sets and supports interactive visual analysis and exploration of ionospheric data, supplemented by interactive data transformations and filters.</div></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"26 ","pages":"Article 100245"},"PeriodicalIF":3.2000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient computation and visualization of ionospheric volumetric images for the enhanced interpretation of Incoherent scatter radar data\",\"authors\":\"J. Araújo , F. López , S. Johansson , A. Westman , M. Bodin\",\"doi\":\"10.1016/j.acags.2025.100245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Incoherent scatter radar (ISR) techniques provide reliable measurements for the analysis of ionospheric plasma. Recent developments in ISR technologies allow the generation of high-resolution 3D data. Examples of such technologies employ the so-called phased-array antenna systems like the AMISR systems in North America or the upcoming EISCAT_3D in the Northern Fennoscandia region. EISCAT_3D will be capable of generating the highest resolution ISR datasets that have ever been measured. We present a novel fast computational strategy for the generation of high-resolution and smooth volumetric ionospheric images that represent ISR data. Through real-time processing, our computational framework will enable a fast decision-making during the monitoring process, where the experimental parameters are adapted in real time as the radars monitor specific phenomena. Real-time monitoring would allow the radar beams to be conveniently pointed at regions of interest and would therefore increase the science impact. We describe our strategy, which implements a flexible mesh generator along with an efficient interpolator specialized for ISR technologies. The proposed strategy is generic in the sense that it can be applied to a large variety of data sets and supports interactive visual analysis and exploration of ionospheric data, supplemented by interactive data transformations and filters.</div></div>\",\"PeriodicalId\":33804,\"journal\":{\"name\":\"Applied Computing and Geosciences\",\"volume\":\"26 \",\"pages\":\"Article 100245\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computing and Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590197425000278\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590197425000278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Efficient computation and visualization of ionospheric volumetric images for the enhanced interpretation of Incoherent scatter radar data
Incoherent scatter radar (ISR) techniques provide reliable measurements for the analysis of ionospheric plasma. Recent developments in ISR technologies allow the generation of high-resolution 3D data. Examples of such technologies employ the so-called phased-array antenna systems like the AMISR systems in North America or the upcoming EISCAT_3D in the Northern Fennoscandia region. EISCAT_3D will be capable of generating the highest resolution ISR datasets that have ever been measured. We present a novel fast computational strategy for the generation of high-resolution and smooth volumetric ionospheric images that represent ISR data. Through real-time processing, our computational framework will enable a fast decision-making during the monitoring process, where the experimental parameters are adapted in real time as the radars monitor specific phenomena. Real-time monitoring would allow the radar beams to be conveniently pointed at regions of interest and would therefore increase the science impact. We describe our strategy, which implements a flexible mesh generator along with an efficient interpolator specialized for ISR technologies. The proposed strategy is generic in the sense that it can be applied to a large variety of data sets and supports interactive visual analysis and exploration of ionospheric data, supplemented by interactive data transformations and filters.